Подача при фрезеровании концевой фрезой

Содержание

В процессе фрезерования зубья многолезвийного режущего инструмента, вращающегося вокруг своей оси, поочерёдно следуя один за другим, врезаются в материал заготовки, которая движется на фрезу. В результате такого рода движений происходит отделение слоя металла с образованием стружки. Элементами режима резания, сопровождающими фрезерование, является глубина, на которую погружается фреза, скорость резания с которой фрезеруется материал и подача движения заготовки.

Ширина фрезерования это расстояние, на котором главные режущие кромки зубьев фрезы соприкасаются с заготовкой.

Глубина резания это слой металла с определённой толщиной, который удаляется в процессе фрезерования за один рабочий проход. Измеряется глубина фрезерования как разность между обрабатываемой поверхностью и образующейся в результате обработки.

Главное движение при фрезеровании это есть ни что иное как вращение фрезы. Выполняя технологические операции, связанные с фрезерованием, режущему инструменту задаётся вращение и при этом в настройках станка устанавливается число оборотов за единицу времени. Однако главным параметром вращения фрезы является не то число оборотов, с которым она поворачивается вокруг своей оси, а скорость резания.

Скорость резания

Скорость резания для фрезы это расстояние, преодолеваемое за одну минуту режущей кромкой на наиболее отдалённой точке радиуса инструмента относительно оси вращения.

Скорость резания рассчитывается по формуле представленной ниже:

  • V – скорость резания
  • π – 3.1416
  • D – диаметр фрезы( мм )
  • n – частота вращения фрезы( об/мин )
  • 1000 – коэффициент перевода мм в м

При технологических расчётах выбирается скорость резания согласованная со свойствами инструмента. Иными словами скорость резания должна быть допустимой в соответствии с периодом стойкости режущего инструмента.

Обороты

Обороты фрезы ( n ), как упоминалось выше, являются главным движением станка. Перед выполнением какой либо работы на станке, фрезеровщику приходится настраивать режимы резания одним из компонентов которых является вращение фрезы. Так как на промышленном оборудовании переключение скоростей указывается в оборотах в минуту, соответственно требуется знать их число, которое можно рассчитать по формуле:

Подача

Подача ( S ) это рабочее перемещение подвижных частей станка, на одних из которых крепятся режущие инструменты, а на других детали или заготовки подвергаемые обработке. Подача является одной из основных характеристик режима резания, которая необходима при обработке на станках.

При выполнении фрезерных работ используются следующие виды подач:

  • Подача на один зуб;
  • Подача на один оборот;
  • Минутная подача.

С помощью фрезерного станка можно задавать подачи в вертикальном, продольном и поперечном направлении.

Подача на зуб ( SZ мм / зуб ) – это отношение минутной подачи и произведения частоты вращения шпинделя к числу зубьев, которыми располагает фреза.

Подача на один оборот фрезы ( S0 мм / об ) – это произведение, полученное в результате умножения подачи на зуб, на количество зубьев режущего многолезвийного инструмента.

Минутная подача ( SМ мм / мин ) – это рабочее перемещение фрезерного стола проходящего расстояние, измеряемое в миллиметрах за одну минуту. Минутную подачу можно вычислить, если умножить значение подачи на один оборот фрезы на число оборотов шпинделя или умножением подачи на зуб на число зубьев фрезы и на её обороты.

Такие опции как подача, скорость резания для инструмента, глубина и ширина, задаваемая в процессе обработки, являются составляющими режимов фрезерования. Режим резания считается оптимальным при условии разумного сочетания всех его элементов обеспечивающих наибольшую производительность, экономию средств, при неизменных качественных показателях в отношении точно¬сти изделий и чистоты обработки их поверхностей.

Благодаря научному подходу для резания металлов были установлены эффективные скорости резания и подачи при условии выбора глубины и ширины при фрезеровании различных металлов и сплавов фрезами соответствующих марок. Подобные данные записаны в специальных таблицах по нормативам режимов резания.

Если встаёт такой вопрос, то статья эта может Вам помочь. Автор будет рад, если после её прочтения Вы сделаете шаг в сторону от всяческих таблиц с указанием "оборотов" без учёта диаметра и вылета инструмента к осмысленному и самостоятельному расчёту режима для конкретных условий. В статье много букв, но, на самом деле, её суть укладывается в две простые формулы, подкреплённые здравым смыслом. И я выдаю их не спеша.

Первое : что режем?

И, исходя из этого, выбираем скорость резания

  1. Алюминий и алюминиевые сплавы – 200-400 м/мин.
  2. Латунь – 150-300 м/мин.
  3. Бронза – 100-150 м/мин.
  4. Бакелит – 50-100 м/мин.
  5. ПВХ – 100-200 м/мин.
  6. Термопласты стандартные (акрил, нейлон и проч.) – 300-500 м/мин.
  7. Древесина – 300-500 м/мин.
  8. Нержавеющая сталь – 50-90 м/мин.

Приведённые скорости резания взяты из каталога инструментов «Belin» и являются общими рекомендациями. В каждом конкретном случае скорость резания может выходить за рамки обозначенных диапазонов. На возможную скорость оказывают влияние различия в сплавах и геометриях фрез, наличие или отсутствие защитного покрытия фрезы и всегда уникальные условия резания. Рекомендации приводятся как ориентир, а не правило.

Пример

Попутно я рассмотрю пример выбора режима. Пример условный, и не стоит воспринимать его как реальную возможность резать определённый материал определённой фрезой в Ваших условиях. Я Ваших условий не знаю, а сам пример строится на пошаговом принятии пунктов, каждый из которых нуждается в практической проверке на конкретном станке. Итоговый режим, к которому я прихожу в конце, требует постепенной апробации, понимания от оператора, что и почему он делает в данный момент, хорошего закрепления заготовки и общей надёжности конструкции. Тем не менее, это вполне рабочий, хороший режим и к нему запросто можно прийти на практике.

Допустим, надо резать акрил. Смотрим «термопласты стандартные» и выбираем среднее значение скорости резания – 400 м/мин.

Второе : чем режем?

Здесь нас интересует выбор диаметра инструмента

С увеличением диаметра фрезы становится больше максимально возможная подача на один её оборот. Однако само число её оборотов в минуту ограничено максимальной скоростью резания данного материала (см. выше), так что увеличение диаметра не всегда оправдано. Тем более, что и стоимость инструментов больших диаметров вырастает значительно.

Обычно диаметр фрезы определяется технологией производства. Считается идеальным, если глубина резания соответствует диаметру фрезы (или меньше диаметра). В крайнем случае, она может быть равна 2-м или 3-м диаметрам. Снимать большее количество материала за один проход несколько опрометчиво; и хотя на практике такие прецеденты подчас прощаются, никто таких условий не рекомендует. Мы тоже не станем рекомендовать — разве что для резки пенопласта и подобных ему материалов с низкой плотностью.

Читайте также:  Чертеж швеллера с размерами

Пример

Наш акрил имеет толщину 8 мм, радиус углов, допустим, не важен, так что я выбираю фрезу диаметром 8 мм и буду раскраивать материал за один проход.

Третье : вычисляем частоту вращения

Имея заданную скорость резания и определённый диаметр, посчитаем обороты

n = (1000 * Vc) / (π * D),

где n — искомое число оборотов в минуту,

Vc — желаемая скорость резания (м/мин),

D — выбранный диаметр фрезы (мм).

Если Ваш шпиндель не может выдать найденное количество оборотов, логично взять чуть больший диаметр, чтобы не терять в максимально возможной скорости резания. Небольшое удорожание инструмента с лихвой окупится адекватно ускоренной резкой материала.

Если Вы на это пойти не готовы, то придётся остановиться на тех оборотах, которые может выдать шпиндель станка (а поскольку безопаснее всего для любой техники использовать её мощность не более чем на 90 % от максимальной, то при бережном отношении к оборудованию скорость резания понизится ещё на 10 %).

Пример

n = (1000 * 400 м/мин) / (3,14 * 8 мм) = около 15924 об./мин. Поднимем до 16-и тысяч для ровного счёта, имея в виду, что максимальная скорость резания по акрилу у нас 500 м/мин, а мы изначально взяли только 400. Впоследствии можно подойти и прямо к 500-м м/мин, пересчитав обороты. Пока, для первого раза, не впадаем в крайности.

Четвёртое : подача на оборот / подача на зуб фрезы

Центральное место при выборе режима!

Сломается или не сломается (и вообще, насколько «комфортно» будет себя чувствовать) фреза, зависит не от того, 6 или 3 метра в минуту она проходит, а от того, какое количество материала снимается каждым её лезвием за один оборот. Это называется — подача на зуб фрезы, или просто подача на зуб (шаг на зуб). Подача на оборот совпадает с подачей на зуб, если речь идёт об однозаходной фрезе. Для двухзаходной фрезы подача на оборот больше подачи на зуб в два раза. Для трёхзаходной — в три и т. д.

Как выбрать подачу на зуб? В идеале, есть рекомендуемые производителем значения подач на зуб для тех или иных материала, диаметра фрезы и глубины резания. Но это только в идеале. Китайский производитель в этом отношении нас не балует. Впрочем, и расстраиваться не нужно. Адекватный диапазон подач на зуб всё равно лежит где-то в пределах от 0,1 до 0,25 мм для заглубления на диаметр фрезы в практически любой материал (правда, если геометрия, материал фрезы и вообще условия обработки подходящие – то есть, речь не о попытках резать нержавейку на станках для производства рекламы). Заметите возможность фрезеровать с бОльшими подачами? Отлично, но давайте не с первого захода. А с меньшими, пожалуй, нет смысла. Конечно, если у вас не микрофреза в патроне.

В среднем, для фрез диаметром от 3 мм, при работе на глубину, равную диаметру, подачу на зуб можно ставить 0,15 мм. Если не уверены, начните с 0,1 мм на зуб. Это минимальное значение, при котором фреза точно не испытывает перегрузок, но и не будет гореть. Увеличить сможете всегда, а безопасность первого врезания таким образом обеспечите. Идеал — это, конечно, максимальные подачи на зуб. Но помните, что неадекватно большая подача на зуб чревата 1) повышенными поперечными нагрузками на фрезу (риск поломки) и 2) образованием толстой стружки, при которой тепло не успевает уходить от лезвия в стружку и скапливается на кромке (в результате повышается температура в зоне резания, снижается стойкость и прочность режущей кромки, возникает дополнительный риск налипания стружки и поломки).

Пример

Предположим, у меня однозаходная фреза. Была бы она трёхмиллиметровой, я указал бы подачу, максимум, 0,15 мм/зуб. Но 8 мм диаметр – не мало, поэтому ставлю 0,2 мм/мин. Это довольно смело для первого врезания, но, скорее всего, на практике можно будет и больше. Хотя — всё же рекомендую начинать с меньших значений. Беру 0,2, по сути, только для репрезентативности, чтобы не заниматься постепенным увеличением подачи на Вашем мониторе.

Пятое : считаем подачу в миллиметрах в минуту / секунду

Приходим к итогу

Зная частоту вращения и желаемую подачу на зуб, легко вычислим минутную подачу.

где F – искомая подача (мм/мин),

n – частота вращения (число оборотов в минуту),

fz – подача на зуб (мм),

z – количество зубьев фрезы.

Если указываете подачу в мм/сек, просто разделите это значение на 60.

При глубине резания, равной 1-му диаметру фрезы, значение вводится как есть. При 2-м диаметрам, отнимите 25%, а при 3-м – 50% от найденной подачи.

Пример

F = 16000 об./мин * 0,2 мм/зуб * 1 зуб = 3200 мм/мин. Или 3200 / 60 = около 53 мм/сек.

Итак, это совершенно безопасная и адекватная подача для однозаходной фрезы диаметром 8 мм по акрилу при частоте вращения 16 тыс. об./мин.

Но не предел мечтаний. Простестировав, мы видим, что фреза спокойно работает. Что можно сделать для увеличения скорости обработки?

Во-первых, положим, наш станок может выдавать 24 тыс. оборотов в минуту, так давайте повысим скорость резания до максимальной (напомню, по акрилу это 500 м/мин. Считаем обороты: n = (1000 * 500 м/мин) / (3,14 * 8) = около 19904 об./мин. Оставим 19,9 тыс. об./мин.

Во-вторых, можно повысить подачу на зуб, но ещё предпочтительнее попробовать двухзаходную фрезу – диаметр 8 мм достаточно большой для этого. Сделаем так, немного понизив подачу на зуб, чтобы исключить риск налипания стружки. Пусть будет 0,15 мм на зуб. И, само собой, имеет смысл взять фрезу с рабочей частью длиной 10 мм, чтобы минимизировать вибрации.

Считаем подачу: F = 19900 об./мин * 0,15 мм/зуб * 2 зуба = 5970 мм/мин. Неплохо, да? Кажется, много, а нагрузка на фрезу и на всю конструкцию станка стала меньше, чем была изначально, поскольку мы снизили подачу на зуб фрезы.

Конечно, есть возможность использовать в нашем примере и более популярный и недорогой 6-й диаметр и также раскраивать на всю глубину. Но:

1) для максимальной скорости резания придётся увеличить обороты (иногда это невозможно);

2) из-за меньшего поперечного сечения та же самая подача на зуб будет создавать бОльшую поперечную нагрузку, соответственно максимальная подача на зуб у фрезы диаметром 6 мм меньше, чем у 8 мм;

3) если мы будем кроить акрил толщиной 8 мм за один проход, то эта глубина составит почти 1,5 диаметра нашей фрезы, что ещё более снизит максимальную подачу, процентов на 20;

4) двухзаходную фрезу этого диаметра придётся использовать с большой осторожностью, если вообще придётся, поскольку её канавки меньше и риск не справиться с отводом стружки существенно выше.

Это не значит, что «шестёркой» в этих условия работать нельзя. Зная материал этой статьи, Вы легко подберёте правильный и максимально быстрый в этих условиях режим. Можно и фрезой в 3 мм работать работать по акрилу толщиною в 8. Конечно, значительно медленнее, но можно (а если есть требование к радусу скруглений, то и приходится). Главное – правильно учесть все условия.

Читайте также:  Материал aisi 304 что это

Надеюсь, моя статья отчасти поможет Вам в этом.

P . S . : общие рекомендации

1. Диаметр фрезы выбирается близким к глубине резания. Если скорость резания на максимальных оборотах получается слишком низкой, имеет смысл увеличить диаметр и, т. о., повысить скорость резания.

2. Вылет фрезы должен быть минимальным, соответственно брать фрезы со слишком большой режущей длиной целесообразно только в случае крайней необходимости: надо помнить, что это минимальные подачи и риск возникновения вибраций.

3. Использование инструментов достаточно большого диаметра стимулирует к увеличению подач. Однако неадекватно высокие подачи способны или сломать фрезу, или передать нагрузку на подшипники шпинделя и несущую конструкцию. Превышать 0,25 мм/зуб можно, только убедившись в запасе прочности фрезы и полностью доверяя конструкции своего станка.

4. Увеличение количества зубьев – хорошая идея для увеличения минутной подачи. Однако следует помнить о том, что стружка должна успевать свободно отводиться из зоны резания. Чем большее количество зубьев имеет фреза, тем меньше места остаётся для её стружечных канавок. Всегда есть риск, что объёма канавок не хватит для быстрого отвода стружки: тогда возможно налипание пыли или стружки, в связи с чем фреза фактически перестанет резать. Последствия этого предугадать нетрудно. Я не призываю Вас отказываться от экспериментов, наоборот. Главное – не ставить поначалу высоких подач на зуб, остановиться на минимальных 0,1-0,12 мм, чтобы убедиться, что фреза работает и справляется с заданным объёмом стружки. Помните, что двухзаходная фреза с подчей на зуб 0,1 мм имеет такую же минутную подачу, как однозаходная с подачей на зуб 0,2 мм. При этом, нагрузка на на её кромку в два раза ниже, соответственно выше стойкость. Как видите, в адекватном увеличении количества заходов есть смысл. Замечу, что в одном из видео специалист «Onsrud» настоятельно рекомендует использовать по пластику только двухзаходные фрезы начиная с диаметра 3/8 дюйма (= 9,525 мм). Но можно работать и трёх-, и четырёхзаходными фрезами – с впечатляющей производительностью. Здесь важно добиться надёжного отвода стружки из зоны резания и правильно выбрать подачу на зуб.

5. Дороговизна цельнотвёрдосплавных фрез больших диаметров заставляет обращать внимание на фрезы с твердосплавными напайками. У последних есть ряд минусов, несмотря на очевидный плюс – значительно меньшую цену. Технология их изготовления не позволяет добиться такой точности, как у цельнотвердосплавных. Также ограничены их геометрические возможности. Стальная основа хуже отводит тепло, чем твёрдый сплав, поэтому оно скапливается в режущей пластине, снижая её твёрдость и прочность, провоцируя налипание стружки. Фрезы с напайками имеют меньшую скорость резания и меньшие подачи. Однако такие фрезы использовать можно и в некоторых случаях необходмо. Главное – для станков с ЧПУ рекомендуются только фрезы, изготовленные производителем инструмента для станков с ЧПУ. Избегайте брать фрезы для ручного фрезера, какими бы хорошими или дешёвыми они не считались. Это позволит Вам сберечь подшипники шпинделя, свой станок и, в конечном счёте, немало средств.

(с) Дмитрий Мирошниченко, компания “AllegroMills”

Содержание

Фрезерование концевыми фрезами

Фрезерование концевыми фрезами

Фрезерование концевыми фрезами применяется для:

обработки пазов, уступов;

фасонной обработки поверхностей;

снятия свесов у щитов, облицованных различными материалами;

контурной обработки деталей;

выполнения иных операций.

В этой статье мы расскажем в деталях о концевых фрезах и технологиях обработки уступов, скосов, а также пазов различных форм.

Фотография №1: фрезерование концевой фрезой

Конструктивные особенности и виды концевых фрез

Монолитные и сборные обычные (цилиндрические) и иные концевые фрезы состоят из рабочих частей и хвостовиков. Они могут быть цилиндрическими и коническими, а зубья — нормальными и мелкими. Инструменты с нормальными зубьями применяют для получистовой и чистовой обработки, а крупнозубые фрезы — для черновой.

Изображение №1: концевая фреза с конусом Морзе (коническим)

Важно! Концевые фрезы имеют небольшие диаметры (3–60 мм). Из-за этого для обеспечения оптимальных скоростей резания инструменты вращаются с высокими частотами. При относительно небольших скоростях подачи нагрузка на 1 зуб минимальна. Это обеспечивает высокое качество обработки.

Монолитные концевые фрезы могут быть:

целиком изготовлены из быстрорежущей или легированной стали;

целиком выполнены из твердых сплавов;

спаянными (материал хвостовика — конструкционная сталь, а рабочей части — твердый сплав).

Кроме этого существуют концевые фрезы с твердосплавными пластинами.

Изображение №2: цилиндрическая концевая фреза с твердосплавными пластинами

Главное преимущество таких фрез — возможность смены пластин без снятия режущего инструмента. Твердосплавные концевые фрезы (с пластинами и без) применяют для получения пазов и уступов в заготовках из закаленных и труднообрабатываемых сталей.

Инструменты могут иметь затылованные и остроконечные зубья. Такие модели называют обдирочными. Их применяют для черновой обработки заготовок, полученных литьем и свободной ковкой.

Изображение №3: обдирочная концевая фреза с затылованными зубьями

Инструменты с острозаточенными зубьями имеют неравномерный окружной шаг. Такие обдирочные фрезы отличаются более высокими производительностью (+ 60–70 %), вибростойкостью и сроком службы.

Изображение №4: обдирочная концевая фреза с остроконечными зубьями

Кроме цилиндрических инструментов существуют концевые фрезы специального назначения. К ним относятся шпоночные, угловые и Т-образные модели.

Шпоночные концевые фрезы

Их применяют для фрезерования шпоночных пазов. Инструменты имеют 2 режущих зуба и торцевые режущие кромки. Они направлены не наружу (как у сверл), а внутрь инструментов.

Изображение №5: шпоночная концевая фреза

Шпоночная фреза может углубляться в материал при осевой подаче (высверливается отверстие), а затем двигаться в сторону при продольной. В результате получается шпоночный паз.

Важно! Переточку таких фрез производят по задним поверхностям торцевых кромок. После операций диаметры инструментов не изменяются.

Угловые концевые фрезы

Их применяют для фрезерования наклонных плоскостей и пазов, имеющих угловые профили. Инструменты бывают одноугловыми и двухугловыми. У первых режущие кромки расположены на конических поверхностях и торцах, а у вторых — только на конических поверхностях. Причем двухугловые фрезы могут быть симметричными. У таких инструментов усилия, возникающие при работе угловых кромок зубьев уравновешиваются. Такие фрезы работают более плавно.

Изображение №6: рабочие части угловых концевых фрез

Вершины угловых фрез закругляют. Это продлевает срок службы инструментов.

Т-образные концевые фрезы

Их применяют для обработки Т-образных пазов.

Изображение №7: конструкция и характеристики Т-образных концевых фрез

Эти фрезы часто ломаются. Это обусловлено сложностью обработки Т-образных пазов, при которой отвод стружки сильно затрудняется. Такие фрезы имеют разнонаправленные зубья и угловые поднутрения.

Оборудование для фрезерования концевыми фрезами

Для фрезерования концевыми фрезами применяются горизонтальные и вертикальные фрезерные станки. Инструменты устанавливают в различные по конструкции патроны.

Патроны для концевых фрез с цилиндрическими хвостовиками

Концевые фрезы с цилиндрическими хвостовиками фиксируют при помощи таких патронов.

Изображение №8: патрон для концевых фрез с цилиндрическими хвостовиками

Они состоят из корпусов (1), гаек (2) и кулачков (3). Корпус устанавливается в шпинделе и затягивается шомполом. Кулачки зажимают инструмент при помощи кольцевой (4) и промежуточных пружин.

Патроны для концевых фрез с коническими хвостовиками

Имеют такую конструкцию.

Изображение №9: патрон для концевых фрез с коническими хвостовиками

Корпус (3) закрепляется в шпинделе станка при помощи шомпола. В сменной втулке (4) имеется винт (5), предназначенный для фиксации фрезы. Пояски втулки проходят через отверстия навернутой на корпус гайки (2) и вставляются в имеющиеся на торце пазы. Положение гайки регулируется при помощи специального винта (6).

Читайте также:  Размер зева гаечного ключа

Важно! Сменные втулки имеют стандартные размеры, соответствующие конусам Морзе.

Цанговые патроны

Предназначены для крепления концевых фрез с цилиндрическими хвостовиками.

Изображение №10: цанговый патрон

Конический хвостовик такого патрона затягивается в шпинделе станка при помощи шомпола. Спереди имеется выточка. В нее входит цанга (1). Это коническая разрезная втулка имеющая отверстие, диаметр которого соответствует диаметру хвостовика закрепляемой фрезы. Для ее фиксации цанга сжимается гайкой (2).

Патроны с регулируемыми эксцентриситетами

Состоят из корпусов (1), колпачковых гаек (3) и втулок (2).

Изображение №11: патрон с регулируемым эксцентриком

Втулка в таком патроне эксцентрично закреплена по отношению к оси вращающейся фрезы (4). Она крепится при помощи двух винтов (5). При поворачивании втулки регулируется ширина паза.

Выбор скорости подачи фрез

Выбор скорости подачи фрезы напрямую зависит от материала заготовки.

Алюминий и сплавы на его основе — 200–420 м/мин.

Бакелит — 40–110 м/мин.

Нержавеющая сталь — 45–95 м/мин.

Термопласты и древесина — 300–500 м/мин.

Латунь — 130–320 м/мин.

Бронза — 90–150 м/мин.

ПВХ — 100–2500 м/мин.

Основные технологии фрезерования концевыми фрезами

Расскажем об основных технологиях фрезерования концевыми фрезами на примере конкретных операций.

Фрезерование уступов концевыми фрезами

Рассмотрим фрезерование двух уступов в бруске. Цель — получение ступенчатой шпонки.

Основные параметры

Ширина фрезерования — 5 мм.

Глубина резания — 12 мм.

Чистота поверхности — 5.

Выбор инструмента

Для этой операции отлично подойдет концевая фреза (диаметр — 16 мм) с нормальными зубьями и цилиндрическим хвостовиком. Чтобы стружка отводилась вверх, винтовые канавки должны быть направлены вправо.

Расчет режима резания

Рассчитаем частоту вращения шпинделя. При скорости подачи 25 м/мин. она будет равна:

n = (1000*v)/(π*d) = (1000*25)/(3,14*16) = 500 об./мин.

Подача на один зуб — 0,03 мм. Вычислим минутную подачу.

s = sзуб*z (чистота поверхности)*n = 0,03*5*500 = 75 мм/мин.

Подготовка к работе и выполнение операции

Фрезерование каждого уступа проходит по следующей схеме.

Закрепите заготовку в тисках, а фрезу — в патроне шпинделя станка.

Установите лимб коробки подач на 80 мм/мин., а лимб коробки скоростей — на 500 об./мин.

Запустите вращение шпинделя.

Подведите заготовку под фрезу.

Поднимите стол до легкого касания фрезой верхней плоскости заготовки.

Установите кулачки выключения продольной подачи на длину фрезерования.

Обработайте деталь с двух сторон.

Изображение №12: фрезерование уступов концевой фрезой

Фрезерование сквозных пазов концевыми фрезами

Для фрезерования сквозных пазов обычно берут концевые фрезы, диаметры которых соответствуют чертежным размерам пазов с допустимыми отклонениями.

Важно! Так делают в случаях, если концевые фрезы не имеют радиального биения. При его наличии ширина паза получится больше заданной. Итог— брак.

Для обработки сквозных пазов чаще всего берут новые концевые фрезы. При работе с переточенными инструментами для соблюдения точности пазов можно использовать патроны с регулируемыми эксцентриками. Технология фрезерования сквозных пазов не отличается от описанной выше.

Фрезерование замкнутых пазов концевыми фрезами

Задача — профрезеровать в планке замкнутый паз. Длина — 32 мм. Ширина — 16 мм.

Изображение №13: чертеж планки

Выбор инструмента

Подойдет та же самая фреза с пятью зубьями (z = 5).

Расчет режима резания

Заданная подача фрезы — 0,01 мм/зуб. Скорость резания — 25 м/мин. Частота — 500 об./мин. Вычислим минутную подачу.

s = sзуб*z*n = 0,01*5*500 = 25 мм/мин.

Минимальная подача на станке — 31,5 мм/мин. Устанавливаем именно ее. Рассчитаем фактическую подачу на один зуб.

sзуб = s/(z*n) = 31,5/(5*500) = 0,013 мм/зуб.

Выполнение операции

При фрезеровании сквозных пазов:

сначала дают ручную вертикальную подачу для того, чтобы фреза врезалась в материал на 4–5 мм;

после этого включают механическую продольную подачу и вырезают глухой паз нужной длины;

постепенно поднимают стол до получения сквозного отверстия.

Изображение №14: закрепление заготовки и фрезерование сквозного паза

Фрезерование наклонных плоскостей цилиндрическими концевыми фрезами

Для фрезерования наклонных плоскостей концевыми фрезами применяют две технологии.

1. Фрезерование с поворотом заготовок

Эта технология предполагает использование универсальных поворотных тисков. Заготовки в них крепятся так же, как и в обычных.

Изображение №15: фрезерование наклонной плоскости концевой фрезой с поворотом заготовки

Важно! Обрабатываемая наклонная плоскость должна располагаться параллельно столу.

2. Фрезерование с поворотом шпинделя станка

Это возможно как на вертикальных, так и на горизонтальных фрезерных станках. Первые для этого должны обладать функцией поворота бабки со шпинделем вокруг горизонтальной оси, а вторые — накладными вертикальными головками. Для фрезерования просто устанавливают нужные углы наклона.

Изображение №16: фрезерование наклонной плоскости концевой фрезой под углом 60°

Фрезерование наклонных плоскостей угловыми концевыми фрезами

Выполняется на горизонтальных фрезерных станках. Обработка заготовок угловыми фрезами происходит на меньших скоростях подачи и резания. Это связано с трудными условиями работы.

К примеру, при глубине фрезерования 12 мм назначают скорость резания 11,8 м/мин. Частота вращение шпинделя — 50 об./мин.

Изображение №17: фрезерование наклонной плоскости угловой концевой фрезой

Обратите внимание! Чтобы избежать брака при фрезеровании наклонной плоскости:

перед операцией удостоверьтесь в точности разметки;

закрепите заготовку максимально надежно;

тщательно очистите тиски и стол от стружки;

проверьте угол наклона инструмента или универсальных тисков.

Фрезерование закрытых шпоночных канавок шпоночными концевыми фрезами

Выполняется на горизонтальных и вертикальных фрезерных станках. Рассмотрим фрезерование шпоночной канавки с шириной 10 мм и глубиной 4 мм.

Изображение №18: фрезерование закрытой шпоночной канавки

Выбор инструмента

Для этой операции возьмем шпоночную фрезу с диаметром 10 мм. Если она перетачивалась, необходимо проверить диаметр рабочей части микрометром.

Расчет режима резания

Заданная скорость резания — 25,2 м/мин. Частота вращения — 800 об./мин. Подача — 0,03 мм/зуб. Количество зубьев — 2. Рассчитаем минутную подачу.

s = 0,03*2*800 = 48 мм/мин.

Подготовка к работе и выполнение операции

После закрепления фрезы в патроне проверьте ее радиальное биение по индикатору. Ширина канавки не должна выйти из допуска. Фрезерование шпоночных канавок происходит так же, как и рассмотренная выше обработка замкнутых пазов.

Обработка концевыми фрезами специальных пазов

К ним относятся Т-образные пазы и пазы типа «ласточкин хвост». Их фрезерование обычно выполняется на вертикальных фрезерных станках.

Фрезерование Т-образных пазов

Фрезерование простых Т-образных пазов включает в себя 2 этапа.

При помощи цилиндрической концевой фрезы получают прямоугольный паз.

При помощи Т-образной фрезы делают паз Т-образным.

Если необходимо получить паз с заваленными кромками, делают третий переход. Фаски снимают при помощи угловой фрезы.

Изображение №19: три этапа фрезерования Т-образного паза с заваленными кромками

Фрезерование паза типа «ласточкин хвост»

Также происходит за 2 этапа.

При помощи цилиндрической концевой фрезы получают прямоугольный паз.

При помощи угловой фрезы типа «ласточкин хвост» завершают операцию.

Изображение №20: фрезерование паза типа «ласточкин хвост»

Контурное фрезерование концевыми фрезами

Существуют две основные технологии контурного фрезерования концевыми фрезами.

С комбинированием ручных подач

Технология выглядит так.

Заготовка фиксируется на столе или в тисках.

Деталь обрабатывается концевой фрезой по размеченному контуру (стол при этом перемещается в продольном и поперечном направлениях).

Обратите внимание! За один раз профрезеровать контур невозможно. Деталь сначала обрабатывают начерно, а затем — начисто.

Изображение №21: фрезерование криволинейного контура с комбинированием ручных подач

С использованием круглого поворотного стола

При фрезеровании заготовок на круглых поворотных столах контуры дуг образуются за счет их круговых подач. Приспособления бывают ручными и механическими. По этой технологии получают высокоточные контуры.

Изображение №22: круглый поворотный стол с ручной подачей

Обратите внимание! Выше мы рассмотрели лишь основные сферы применения концевых фрез. Об иных операциях и особенностях их выполнения читайте в специальной литературе.

Правила фрезерования и полезные советы

Станок, его шпиндель и стол должны быть чистыми.

Не используйте неподходящие рукоятки и ключи.

При фиксации в тисках поковок, черных отливок и заготовок из проката одевайте на губки накладки из латуни, меди или алюминия.

Накладки также нужны при фрезеровании обработанных деталей и заготовок.

Заготовки и зажимные приспособления должны быть очищены от стружки.

Не забывайте снимать заусенцы после переходов.

Не зажимайте слишком сильно тонкие заготовки.

Перед опусканием и поднятием стола не забывайте проверять затяжку.

В процессе фрезерования следите за инструментом. О том, что фреза затупилась, можно понять по вибрациям станка и чрезмерному нагреву стружки.

Ссылка на основную публикацию