Основные марки инструментальных сталей

Цель работы: изучение структуры, свойств, способов термической обработки инструментальных сталей и области их применения.

Приборы и оборудование: набор микрошлифов в лабораторной коллекции инструментальных сталей, набор твёрдых сплавов, металлографические микроскопы, твердомеры Роквелла, коллекция металлорежущих инструментов.

Основные понятия. К инструментальным сталям относят стали, предназначенные для изготовления режущего, измерительного, штампового и других инструментов. Основными свойствами этих сталей является твердость, вязкость, износостойкость, теплопроводность (красностойкость), прокаливаемость.

Стали для режущего инструмента должны обладать высокой твёрдостью, превышающей твердость обрабатываемого материала. Режущая кромка инструмента всё время находится в соприкосновении со снимаемой стружкой, т.е. происходит непрерывное трение и износ поверхности режущей кромки инструмента. Поэтому сталь для режущего инструмента, кроме высокой твёрдости, должна иметь высокую износостойкость. В процессе резания механическая энергия превращается в тепловую и вследствие этого нагревается инструмент, обрабатываемая деталь и стружка.

Инструментальные стали по назначению делятся на три группы: углеродистые и легированные стали для режущих инструментов; быстрорежущие стали; штамповые стали и отдельная группа – твердые сплавы.

Углеродистые инструментальные стали. Углеродистые инструментальные стали производят качественными: У7, У8, У9, У10, У11, У12, У13 и высококачественными: У7А, У8А, У9А, У10А, У11А, У12А, У13А.

Высокая твердость (HRC 62-65) инструментальных сталей достигается в результате закалки. Стали У7, У8 подвергаются полной закалке, стали У9-У13 – неполной закалке. Закалку углеродистой стали проводят в воде или водных растворах солей и щелочей, так как она имеет малую устойчивость переохлаждённого аустенита. После закалки структура углеродистых сталей У7, У8 состоит мартенсита и избыточного карбида (цементита). Избыточные карбиды повышают износостойкость стали. В структуре закаленных углеродистых сталей имеется также небольшое (до5-8%) количество остаточного аустенита, но так как его мало, твёрдость стали не снижается.

Критический диаметр изделий из углеродистых сталей не превышает 15 мм. Поэтому эти стали применяют для изготовления мелких инструментов с поперечным сечением до 25 мм с незакалённой сердцевиной. При несквозной прокаливаемости меньше деформация инструмента при закалке. Инструмент с незакалённой вязкой сердцевиной обладает большей устойчивостью к ударам и вибрациям.

После закалки инструмент из углеродистой стали подвергают низкотемпературному отпуску. В зависимости от назначения инструмента и требуемой твердости температура отпуска может изменяться в определенных пределах.

Для уменьшения внутренних напряжений при сохранении высокой твердости достаточен отпуск при 150. 180° С в течение 1-2 часов. Такой отпуск проводят для инструментов, работающих с небольшими ударными нагрузками. Для инструментов, для которых требуется достаточно высокая твердость и повышенная вязкость, применяют отпуск при температурах до 220. 240°С. Инструменты, работающие с ударными нагрузками, отпускают при 250. 320°С.

Так как инструмент из углеродистой стали теряет твердость при нагреве выше 200°C условия работы его должны быть такими, чтобы режущая кромка в процессе работы не нагревалась выше 200°С, т.е. резание следует проводить при небольших скоростях.

Из качественных углеродистых инструментальных сталей изготавливают несложные по конфигурации режущие и измерительные инструменты. Более сложные инструменты изготавливают из высококачественных инструментальных сталей.

Для режущего инструмента (фрезы, зенкеры, сверла, спиральные пилы, шаберы, ножовки ручные, напильники, бритвы, острый хирургический инструмент и т.д.) обычно применяют заэвтектоидные стали (У10, У11, У12 и У13). Деревообрабатывающий инструмент, зубила, кернеры, бородки, отвертки, топоры, молотки изготовляют из сталей У7, У8.

Легированные инструментальные стали.Легированные инструментальные стали получают на базе углеродистых инструментальных сталей путем легирования их хромом, вольфрамом, ванадием, марганцем, кремнием и другими элементами. Легирование приводит к большей устойчивости переохлажденного аустенита и большей прокаливаемости, чем у углеродистых инструментальных сталей. Эти стали отличаются также повышенной вязкостью, меньшей склонностью к деформациям и трещинообразованию при закалке. Из легированных инструментальных сталей марок 9ХС, ХВГ, Bl, XB5 и других изготавливают различные режущие инструменты, имеющие сложную конфигурацию.

Для получения массивного инструмента и инструмента сложной формы предназначена сталь 9ХС (0,95-1,25% С; 1,2-1,6% Si).

Стали марок ХВГ (0,9% С; 0,9-1,2% Сr; 1,2-1,6% W; 0,8-1,1% Мn) и ХГ относятся к малодеформирующимся. Их используют для изготовления калибров, длинных метчиков, бритвенных ножей и лезвий и другого инструмента, для которого весьма важно сохранение размеров в процессе термической обработки, а также для изготовления деталей точных приборов.

Сталь ХВ5 (1,25-1,50% С) называется алмазной, обладает исключи­тельно высокой твердостью в закаленном состоянии (HRC 67-69). Приме­няется для изготовления фильер холодного волочения, отделочного инструмента, снимающего стружку с твердых материалов (белый чугун, стекло, камень).

Быстрорежущие стали.Быстрорежущие стали широко используют для изготовления режущего инструмента, обладающего большой твердостью и работающего при высоких скоростях резания. При обработке с большими скоростями резания твердых материалов и при снятии стружки большого сечения режущая кромка инструмента нагревается до высокой температуры. Поэтому режущий инструмент, работающий в тяжелых тепловых условиях, следует изготовлять из стали, обладающей красностойкостью, т.е. способностью сохранять высокую твердость при нагреве до высокой температуры (600. 650° С). Для обеспечения красностойкости сталь легируют большим количеством вольфрама в сочетании с молибденом и ванадием. Кроме этих элементов все быстрорежущие стали легированы хромом (примерно 4%), а некоторые – кобальтом. Среднее содержание углерода во всех быстрорежущих сталях несколько меньше 1%.

Быстрорежущие стали (high speed steel) маркируют буквой Р (rapid – быстрый), выпускают следующих марок: Р6, Р9, Р12, Р18 (цифра в марке стали означает процент вольфрама – основного легирующего элемента).

Вольфрам – дефицитный и дорогой элемент, поэтому его содержание в быстрорежущей стали стремятся уменьшить. Частично вольфрам заменяют молибденом из расчета, что 1% молибдена оказывает такое же влияние на свойства быстрорежущей стали, как 1,5-1,6% вольфрама. Содержание молибдена в быстрорежущих сталях обычно не превышает 5%. Такое сочетание вольфрама и молибдена имеется в широко применяемой стали Р6М5.

Быстрорежущие стали условно разделяют на стали умеренной красностойкости и стали повышенной красностойкости. В первую группу входят стали, легированные вольфрамом и молибденом и с небольшим содержанием ванадия (1-2%): Р18, Р12, Р9, Р6М5. Эти стали сохраняют высокую твердость (не ниже HRC 60) при нагреве до 620°С.

В настоящее время основной маркой быстрорежущих сталей (80% от общего объема производства) является Р6М5. Для повышения эксплуатационных свойств сталь дополнительно легируют азотом (Р6АМ5).

В группу сталей повышенной теплостойкости входят стали с высоким (> 2%) содержанием ванадия, а также стали, дополнительно легированные кобальтом (Р9К5, Р12ФЗ, Р18К5Ф2 и др.). Стали этой группы сохраняют высокую твердость при нагреве до 630.. .650°С.

Быстрорежущие стали по структуре в отожженном состоянии относятся к карбидному (ледебуритному) классу сталей. В их структуре имеется эвтектика (ледебурит), в состав которой входят карбидообразующие элементы – хром, вольфрам, ванадий, кобальт, молибден.

Эвтектика, которая располагается в виде сетки по границам зерен, снижает вязкость стали, поэтому литая быстрорежущая сталь отличается повышенной хрупкостью. При горячей обработке давлением (ковке) сетка эвтектики дробится и первичные (эвтектические) карбиды распределяются в структуре более равномерно.

Горячедеформированную быстрорежущую сталь подвергают отжигу при 840. 860° С для снижения твердости, облегчения обрабатываемости резанием и подготовке структуры к закалке. Структура после отжига мелкозернистый сорбитообразный перлит, состоящий из феррита и мелких карбидов, и избыточные карбиды – вторичные и первичные. Твердость стали после отжига должна быть не более НВ 255-285.

В настоящее время все шире применяют быстрорежущие стали, полученные методом порошковой металлургии. В этих сталях карбидная фаза очень мелкая, что способствует более полному растворению карбидов в аустените и повышению теплостойкости. Основные порошковые стали, предложенные для замены сталей Р18 и Р6М5 – Р0М2ФЗ-МП, М6Ф1-МП, М6ФЗ-МП мало содержат дефицитного вольфрама. Несмотря на высокое содержание ванадия, стали хорошо шлифуются. Применяются и другие порошковые стали, например, Р6М5К5-МП и Р12МЗК8. Стойкость режущего инструмента из порошковых сталей по сравнению со стойкостью инструмента из аналогичных сталей обычного производства в 1,2-2 раза выше.

Инструмент, изготовленный из быстрорежущей стали, подвергают закалке и трехкратному отпуску (см. рис. 45, а).

Быстрорежущие стали обладают пониженной теплопроводностью, медленный или ступенчатый нагрев позволяет выровнять температуру по сечению инструмента и предупредить образование больших внутренних напряжений. При ступенчатом нагреве инструмент подогревают при 800. 850°С. Для сложной формы инструмента применяют два подогрева: при 500°С и 800. 850° С. Быстрый окончательный нагрев позволяет предупредить окисление и обезуглероживание стали. Выдержку при высокой температуре в интервале температур 1210. 1290°С дают очень непродолжительную (10-12 с на каждый миллиметр диаметра или наименьшей толщины инструмента при нагреве в расплавленной соли).

Закаливают инструмент из быстрорежущей стали в масле. Для инструмента сложной формы применяют ступенчатую закалку с выдержкой при 450. 500°С в течение 2-5 мин в соляной ванне для выравнивания температуры по сечению инструмента и дальнейшим охлаждением на воздухе.

Структура быстрорежущей стали после закалки состоит из высоко­легированного мартенсита, содержащего 0,3-0,4% С, нерастворенных избыточных карбидов и остаточного аустенита.

Сохранение в структуре закаленной стали большого количества остаточного аустенита объясняется тем, что аустенит высоколегированный и для него температура начала мартенситного превращения Мн выше комнатной температуры, а температура конца мартенситного превращения Мн – ниже 0°С.

Отпуск при 500. 560°С приводит снова к повышению твердости до HRC 63-65. Такое повышение твердости обменяется выделением из мартенсита дисперсных специальных карбидов. К этому превращению добавляется также превращение остаточного аустенита. Высоколегированный остаточный аустенит достаточно устойчив при температурах отпуска до 500°С. В процессе выдержки при отпуске с температурой 550. 570° С из аустенита выделяются в дисперсном виде специальные карбиды. Аустенит обедняется углеродом и легирующими элементами и становится менее устойчивым. В процессе охлаждения от температуры отпуска остаточный аустенит превращается в мартенсит (вторичная закалка). Превращение не заканчивается полностью при однократном отпуске. Для того, чтобы достигнуть почти полного превращения остаточного аустенита в мартенсит, необходимо двух-трехкратное повторение отпуска при 550. 570° С с выдержкой при каждом отпуске 45-60 мин (см. рис. 45, а). Следует отметить, что аустенит превращается в мартенсит не при нагревании и не в процессе выдержки, а во время охлаждения.

Читайте также:  Цвета проводов по фазам 3 фазы

Цикл термической обработки быстрорежущей стали может быть сокращен, если сразу после закалки сталь обработать холодом при -75° С. -80° С. В этом случае вместо трехкратного отпуска назначают однократный отпуск (см. рис. 45, б).

Микроструктура стали после закалки и отпуска состоит из мартенсита и карбидов. Если температура отпуска или во время выдержки недостаточны (сталь недоотпущена), то в структуре сохраняется некоторое количество остаточного аустенита. При отпуске выше 600°С твердость быстрорежущей стали снижается в связи с распадом мартенсита и коагуляцией выделившихся карбидов.

Штамповые стали. Штампами называют инструменты, изменяющие форму материала без снятия стружки. Стали, используемые для изготовления штампового инструмента, должны обладать высоким сопротивлением пластической деформации и износостойкостью, а в некоторых случаях (при разогреве) и повышенной теплостойкостью. При больших размерах штампов стали должны иметь высокую прокаливаемость и незначительно изменять свой объем при закалке.

Рис. 45. Режимы термической обработки инструмента из быстрорежущей стали:

а – с трехкратным отпуском; б – с обработкой холодом

Штамповые стали, применяемые при изготовлении инструментов для обработки металлов давлением, делятся на два класса в зависимости от условий деформирования металла: в холодном или горячем состоянии.

Стали для штампов холодного деформирования.К инструменту, деформирующему металл в холодном состоянии относятся вытяжные, вырезные, гибочные, формовочные, высадочные штампы, дыропробивные пуансоны, обрезные матрицы, ножи для резания материалов, волочильные доски, ролики для накатывания резьбы и др.

Все штамповые стали для холодного деформирования являются высокоуглеродистыми, заэвтектоидными, а количество легирующих элементов определяется необходимой износостойкостью и прокаливаемостью стали.

Для обработки малопрочных материалов используют стали У10, У11, У12.

Более крупные и сложные по форме штампы, предназначенные для работы в более тяжелых условиях, изготавливают из легированных сталей повышенной прокаливаемости (X, ХВГ, 7ХГ2ВМ и др.). штампы из легированных сталей закаливают в масле, что предохраняет их от образования трещин и значительного изменения размеров.

Для изготовления инструмента, который должен иметь высокую твердость и повышенную износостойкость, а также малую деформируемость при закалке (дыропрошивные матрицы и пуансоны, матрицы глубокой высадки листового металла, матрицы и пуансоны глубокой высадки вырубных и просечных штампов сложной конфигурации и др.), применяют стали высокой прокаливаемости и износостойкости Х12М, Х12Ф1,Х6ВФ.

Для изготовления рабочих частей штампов широко используют металлокерамические твердые сплавы с более высокой твердостью, чем инструментальные стали (твердые сплавы группы ВК с содержанием кобальта не менее 15%).

Стали для штампов горячего деформирования.К инструменту, деформирующему металл в горячем состоянии, относятся штампы для кузнечного производства, которые деформируют металл, предварительно нагретый до высоких температур (1000º. 1150°С). В процессе работы штампы подвергаются воздействию сложных напряжений (сжатию, растяжению, изгибу) и истирающему действию горячего металла. Кроме того, при пластической деформации рабочая часть штампа значительно нагревается. Поэтому сталь для изготовления кузнечных штампов должна иметь высокие механические свойства (прочность, вязкость, износостойкость), не только при обычных, но и при повышенных температурах, т.е. быть теплостойкой.

Теплостойкие стали применяют для изготовления тяжелонагруженного прессового инструмента, а также штампов для горизонтально-ковочных машин. Из них также изготовляют детали пресс-форм для литья под давлением магниевых, алюминиевых и медных сплавов.

При кратковременном воздействии горячего металла на штамп используются стали 5ХГМ, 5ХНМ, 5ХНВ, 5ХНВС и др. все стали содержат одинаковое количество углерода 0,5-0,6%, что дает возможность получить требуемую твердость и прочность при достаточной вязкости.

Из этих сталей изготавливают молотовые штампы, для которых характерны большие размеры и работающие со значительными ударными нагрузками при умеренном разогреве рабочих поверхностей (примерно до 400°С).

Долговременное воздействие ударных нагрузок выдерживают стали 4Х2В5ФМ, 4ХЗВФ2М2, ЗХ2В8Ф и др.

Твердые сплавы.Для изготовления твердых сплавов используют метод порошковой металлургии. Для этого порошки карбидов вольфрама (WC), титана (ТС) и тантала (ТаС) смешивают с кобальтом (Со), прессуют в формы и затем запекают при 1500…2000ºС.

Применение твердых сплавов позволяет не только увеличить скорость обработки, но и значительно повысить износостойкость обрабатывающего и штампового инструмента. Износостойкость твердых металлокерамических сплавов увеличивается с ростом твердости и в 10-15 раз превышает значения, характерные для быстрорежущей стали. Сохраняется она до 800…1000ºС.

Твердые сплавы делятся на три группы: одно-, двух-, и трехкарбидные.

Однокарбидные твердые сплавы, которые содержат карбиды вольфрама, называют вольфрамокобальтовыми (группа ВК). В марках ВК2, ВК4, ВК6, ВК10 цифра показывает процентное содержание кобальта, остальное – карбид вольфрама. Сплавы этой группы наиболее прочные, с увеличением содержания кобальта сплавы повышают сопротивление ударным нагрузкам, одновременно снижается износостойкость.

Сплавы ВК4, ВК6 рекомендуются для чернового точения, фрезерования, рассверливания, зенкерования при обработке чугуна, жаропрочных сплавов, цветных металлов и неметаллических материалов.

Сплав ВК8 применяют для чернового точения и других видов черновой обработки, а также для волочения и калибровки труб, прутков и проволоки.

Сплав ВК10 предназначается для изготовления быстроизнашивающихся деталей. Этот сплав характеризуется высокой эксплуатационной прочностью, но сравнительно низкой износостойкостью.

Двухкарбидные твердые сплавы помимо группы ВК содержат еще карбиды титана, поэтому их называют титановольфрамокобальтовыми (группа ТВК). В марках Т5К10, Т15К6, Т30К4 цифры после буквы Т показывают процентное содержание карбидов титана, после К-содержание металлического кобальта, остальное-карбиды вольфрама. Эти сплавы менее прочны и более износостойки, чем сплавы первой группы.

Титановольфрамовые сплавы применяют для чистового (Т30К4) и чернового (Т15К6, Т5К10) точения, фрезерования и строгания стали.

Трехкарбидные твердые сплавы содержат еще и карбиды тантала и поэтому называются титанотанталовольфрамокобальтовыми (группа ТТК). В марках ТТ7К12, ТТ8К6, ТТ20К9 цифра перед К показывает суммарное процентное содержание карбидов титана и тантала, после К – содержание металлического кобальта, остальное – карбиды вольфрама. Сплавы обладают повышенной прочностью, износостойкостью и вязкостью.

Состав (массовая доля основных компонентов, %) и твердость HRA некоторых твердых сплавов даны в табл. 13 .

Титанотанталовольфрамокобальтовые сплавы применяют при черновой и чистовой обработке труднообрабатываемых материалов, в том числе жаропрочных сплавов и сталей.

Разработаны твёрдые сплавы, не содержащиеся дефицитного вольфрама. Безвольфрамовые твердые сплавы на основе Ti + Ni + Mo – сплав ТН-20 (цифра показывает суммарное содержание Ni и Mo) и на основе карбонитрида титана Ti(NC) + Ni + Mo – KHT- 16. Никель и молибден образуют связывающую матрицу, применяются при получистовом и чистовом точении и фрезеровании сталей и цветных металлов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: "Что-то тут концом пахнет". 8191 – | 7876 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Инструментальная сталь — это материал, который на более чем на 0,7% состоит из углерода. Ее ключевыми характеристиками является твердость и прочность, их максимальные показатели достигаются при термической обработки стали. Ее преимущественно используют при изготовлении разных инструментов.

Так называется сталь, содержащая более 0,7% углерода. Ее основными характеристиками являются прочность и твердость, которые достигают максимальных показателей после термической обработки. Основное применение такого стального материала — изготовление инструментов.

Преимущества и ассортимент

Инструментальная сталь является одним из наиболее востребованных материалов на рынке. Сплав имеет высокую твердость и невысокую стоимость. Однако имеется и недостаток у материала — его низкая износостойкость, поэтому его не применяют для производства машинных деталей и оборудования, которое подвергается постоянным нагрузкам.

Сортамент данного материала следующий:

  • горячекатаные квадраты и круги;
  • кованые полосы, круги и квадраты.

Основные виды

Такой вид материалов подразделяется на такие три основные категории:

  • инструментальные углеродистые стали;
  • легированные инструментальные стали;
  • быстрорежущие.

Все они производятся согласно установленному ГОСТу.

Углеродистые виды материала во время нагревания теряют свою прочность, соответственно, их используют для производства инструментов, которые работают на малых скоростях или при простых условиях резания, когда температура нагревания составляет не больше 200 градусов.

Преимущественно их применяют для производства:

  • напильников;
  • сверл;
  • разверток;
  • метчиков и не только.

Поскольку углеродистая инструментальная сталь обладает низкими показателями свариваемости, ее не используют при изготовлении сварных конструкций.

В зависимости от процентного соотношения содержания в материале углерода, марганца, кремния, серы и других элементов он подразделяется на такие марки, как:

Легированные материалы и их маркировка

Легированные материалы в составе дополнительно содержат следующие элементы:

Все они улучшают характеристики материала. Легирующие элементы должны указываться при маркировке с помощью специальных обозначений буквами. Все это позволяет заранее увидеть, из чего состоит данная инструментальная сталь. Марки материала также могут включать не только буквы, но и цифры. Цифры указывают на то, в каком количестве тот или иной элемент содержится в стали в процентном соотношении. Если при маркировке цифра не ставится, то количество элемента равно около 1 процента.

Читайте также:  Уклон и конусность на чертежах

При маркировке легированной стали на первом месте стоит количество углерода, которое равно десятым долям процента. Например, марка 6ХС содержит углерод в количестве 0,6%, а также по одному проценту кремния и хрома.

Инструментальные легированные стали преимущественно используются для производства штамповых или режущих инструментов, к ним относят:

Как и углеродистые стали, легированные материалы тоже непригодны для производства сварных конструкций.

Быстрорежущие стали

Маркировка быстрорежущих материалов состоит из буквы «Р», числа, указывающего на массовую долю вольфрама и букв элементов, присутствующих в составе материала. Это могут быть кобальт, молибден и другие. Далее идут цифровые значения их массовых долей. Если маркировка включает буквы «Ш», то это значит «электрошлаковый переплав».

Доля хрома в быстрорежущей стали при маркировке не указывается, также отсутствует указание массовой доли молибдена, если она не превышает отметку в один процент.

Такие виды материалов оптимально подходят для производства режущих инструментов, которые от трения нагреваются до температуры от 600 до 6500 градусов. При этом они не будут деформироваться, и терять свою твердость. Данный вид изделий хорошо поддается свариванию посредством стыковой электросварки со сталью таких марок, как 45 и 40Х.

Классификация

Все марки для производства подразделяются на следующие группы:

  • теплостойкие и вязкие — обычно это заэвтектоидные и доэвтектоидные стали, включающие хром, молибден и вольфрам. Углерод в сталях должен соответствовать низким и средним значениям;
  • высокотвердые и вязкие, а также нетеплостойкие — в сплавах содержится минимум легированных элементов, а также среднее количество углевода, отличающиеся малой прокаливаемостью;
  • Высокотвердые и теплостойкие, а также износостойкие — это быстрорежущие легированные стали с большим содержанием легированных элементов, сплавы с ледебуритной структурой, в которых содержится более 3 процентов углерода;
  • износостойкие, высокотвердые со средней теплостойкостью — материалы имеют заэвтектоидную и ледебуритную структуру, в их составе содержится примерно 2−3 процента углерода и 5−12 процентов хрома;
  • высококачественная и качественная инструментальная сталь — отличаются друг от друга по процентному соотношению присутствия в них серы и фосфора;
  • высокотвердые и нетеплостойкие — эти инструментальные стали с заэвтектоидной структурой вообще не включают в себя легированные элементы, или же они присутствуют в минимальном количестве. Уровень их твердости обеспечивается за счет большого количества углерода в составе.

Уровень твердости — очень важный параметр для рассматриваемого материала. Обычно высокотвердые стали не используют для производства инструментов, которые во время эксплуатации подвергаются ударным сильным нагрузкам. Это происходит за счет того, что эти сплавы имеют невысокую вязкость и большую хрупкость, из-за чего инструмент, которых из них сделан, может сломаться.

По уровню твердости данные стальные материалы бывают с высоким уровнем вязкости, где углерода содержится 0,4 -0,7% или же с большой износостойкостью и твердостью, где количество углевода равно 0,7−1,5%.

Отличаются стали и по степени своей прокаливаемости. По этому критерию они подразделяются на:

  • изделия с повышенной прокаливаемостью, где диаметр прокаливания составляет от 80 до 100 мм;
  • высокой — диаметр от 50 до 80 мм;
  • низкой — от 10 до 25 мм соответственно.

Сферы использования

Данный материал в промышленности имеет довольно широкий спектр применения. Они применяются при изготовлении:

  • режущих инструментов;
  • измерительных устройств;
  • литейных пресс-форм, работающих под давлением;
  • рабочих деталей штампов, которые работают по принципу горячего и холодного деформирования;
  • высокоточных изделий.

Требования к материалу

Требования к данным материалам предъявляются в зависимости от того, как именно они будут использоваться. Но есть общие требования к ним независимо от марок:

  • высокий уровень твердости;
  • высокий уровень прочности;
  • износостойкость;
  • хорошая вязкость, что особенно важно при изготовлении деталей, которые при использовании будут подвергаться ударам;
  • низкий уровень чувствительности к перегреву, процессам прилипания и приваривания к деталям, которые подвержены обработке;
  • хороший уровень обработки посредством резки металла;
  • устойчивость к появлению трещин;
  • восприимчивость к прокаливанию;
  • пластичность в горячем виде;
  • возможность шлифовки;
  • возможность противостоять обезуглероживанию.

Естественно, это не все требования. Так, марки, которые предназначаются для использования в условиях холодной деформации, дополнительно должны иметь гладкую рабочую поверхность, сохранять свою форму и размер и иметь предел текучести и упругости. А те материалы, которые должны применяться в условиях горячей деформации, должны иметь высокую теплопроводность, не допускать отпуска и быть устойчивыми к колебанию температур.

Итак, вы рассмотрели особенности инструментальной стали, выяснили, на какие виды и категории она подразделяется и для каких целей используется та или иная их марка. Подробнее информацию о них можно прочесть в других статьях, посвященных этому материалу.

Содержание серы не более 0,03%

фосфора – 0,035%, хрома – 0,2%

никеля – 0,25%, меди – 0,25%

Содержание серы не более 0,02%

Фосфора – 0,03%, хрома – 0,15%

меди – 0,2%

Марка стали

Область применения

У7, У7А

Зубила, стамески, пилы, керны, слесарный инструмент

У8, У8А

Ножницы, пилы, ролики накатные, пробойники, матрицы, ручные дереворежущие инструменты.

У10, У10А, У11, У11А

Мелкоразмерный режущий инструмент.

У12, У12А

Режущий инструмент, работающий при низких скоростях резания

У13, У13А

Напильники, шаберы, резцы, гравировальный инструмент.

В инструментальных легированных сталях первая цифра, характеризует массовое содержание углерода в десятых долях процента (если цифра отсутствует, то содержание углерода в ней до одного процента). Буквы в обозначении указывают на содержание соответствующих легирующих элементов: Г – марганец, Х – хром, С – кремний, В – вольфрам, Ф – ванадий, а цифры обозначают содержание элемента в процентах. Инструментальные легированные стали глубокой прокаливаемости марок 9ХС, ХВСГ, Х, 11Х, ХВГ отличаются малыми деформациями при термической обработке.

Марка стали

1,05-1,15

0,15-0,4

0,15-0,35

  1. Химический состав малолегированной стали В1 установлен так, чтобы сохранить преимущества углеродистых сталей, улучшив закаливаемость и снизив чувствительность к перегреву
  2. Стали типа ХВ5 имеют повышенную твердость (HRC до 70) из-за большого содержания углерода и сниженного содержания марганца
  3. Хромистые стали типа Х относятся к сталям повышенной прокаливаемости
  4. Стали, легированные марганцем типа 9ХС, относятся к устойчивым против снижения твердости при отпуске

Эти материалы имеют ограниченные области применения: углеродистые идут, в основном, для изготовления слесарных инструментов, а легированные – для резьбообразующих, деревообрабатывающих и длинномерных инструментов (ХВГ)- протяжек, разверток и т.д.

8.2. Быстрорежущие стали (ГОСТ 19265-73)

Химический состав и прочностные характеристики основных марок этих сталей приведены в таблицах. Быстрорежущие стали обозначаются буквами, соответствующими карбидообразующим и легирующим элементам: Р – вольфрам, М – молибден, Ф – ванадий, А – азот, К – кобальт, Т – титан, Ц – цирконий). За буквой следует цифра, обозначающая среднее массовое содержание элемента в процентах (содержание хрома около 4 процентов в обозначении марок не указывается).

Цифра, стоящая в начале обозначения стали, указывает содержание углерода в десятых долях процента (например, сталь 11Р3АМ3Ф2 содержит около 1,1 % С; 3 % W; 3 % Мо и 2 % V). Режущие свойства быстрорежущих сталей определяются объемом основных карбидообразующих элементов: вольфрама, молибдена, ванадия и легирующих элементов- кобальта, азота. Ванадий в связи с малым массовым содержанием (до 3%) обычно не учитывается, и режущие свойства сталей определяются, как правило, вольфрамовым эквивалентом, равным (W+2Mo)%. В прейскурантах на быстрорежущие стали выделяют три группы сталей: стали 1-й группы с вольфрамовым эквивалентом до 16 % без кобальта, стали 2-й группы – до 18 % и содержанием кобальта около 5 %, 2ста 0ли 3-й группы – до 20 % и содержанием кобальта 5-10 %. Соответственно, различаются и режущие свойства этих групп сталей.

Марка стали

11Р3АМ3Ф2

Марка стали

Кроме стандартных, применяются и специальные быстрорежущие стали, содержащие, например, карбонитриды титана. Однако высокая твердость заготовок этих сталей, сложность механической обработки не способствующих широкому распространению. При обработке труднообрабатываемых материалов находят применение порошковые быстрорежущие стали Р6М5-П и Р6М5К5-П. Высокие режущие свойства этих сталей определяются особой мелкозернистой структурой, способствующей повышению прочности, уменьшению радиуса скругления режущей кромки, улучшенной обрабатываемости резанием и в особенности шлифованием. В настоящие время проходят промышленные испытания безвольфрамовые быстрорежущие стали с повышенным содержанием различных легирующих элементов, в том числе алюминия, малибдена, никеля и других

Один из существенных недостатков быстрорежущих сталей связан с карбидной неоднородностью, т.е. с неравномерным распределением карбидов по сечению заготовки, что приводит, в свою очередь, к неравномерной твердости режущего лезвия инструмента и его износа. Этот недостаток отсутствует у порошковых и мартенситно-стареющих (с содержанием углерода менее 0,03%) быстрорежущих сталей.

Марка стали

Примерное назначение и технологические особенности

Может использоваться для всех видов режущего инструмента при обработке обычных конструкционных материалов. Обладает высокой технологичностью.

Примерно для тех же целей, что и сталь Р18. Хуже шлифуется.

Для инструментов простой формы, не требующих большого объёма шлифовальных операций; применяется для обработки обычных конструкционных материалов; обладает повышенной пластичностью и может использоваться для изготовления инструментов методами пластической деформации; шлифуемость пониженная.

Для всех видов режущих инструментов. Возможно использовать для инструментов, работающих с ударными нагрузками; более узкий, чем у стали Р18 интервал закалочных температур, повышенная склонность к обезуглероживанию.

Р6М5Ф3

Чистовые и получистовые инструменты / фасонные резцы, развёртки, протяжки и др. / при обработке конструкционных сталей.

10Р6М5

То же, что и сталь Р6М5, но по сравнению со сталью Р6М обладает несколько большей твёрдостью и меньшей прочностью.

Читайте также:  Гидравлический насос из домкрата своими руками

Р9Ф5, Р14Ф4

Используются для изготовления инструментов простой формы, не требующих большого объёма шлифовальных операций рекомендуется для обработки материалов с повышенными абразивными свойствами / стеклопластики, пластмассы, эбонит и т.п. / для чистовых инструментов, работающих со средними скоростями резания и малыми сечениями среза; шлифуемость пониженная.

Р12Ф3

Для чистовых и получистовых инструментов, работающих со средними скоростями резания; для материалов с повышенными абразивными свойствами; рекомендуется взамен сталей Р6Ф5 и Р14Ф4, как сталь лучшей шлифуемости при примерно одинаковых режущих свойствах.

Р9М4К8, Р6М5К5

Для обработки высокопрочных нержавеющих, жаропрочных сталей и сплавов в условиях повышенного разогрева режущей кромки; шлифуемость несколько понижена.

Р10К5Ф5, Р12К5Ф5

Для обработки высокопрочных и твёрдых сталей и сплавов; материалов обладающих повышенными абразивными свойствами; шлифуемость низкая.

Для обработки сталей и сплавов повышенной твёрдости; чистовая и получистовая обработка без вибраций; шлифуемость пониженная.

11Р3АМ3Ф2

Для инструментов простой формы при обработке углеродистых и легированных сталей с прочностью не более 800 МПа.

Р6М5К5-МП, Р9М4К8-МП (порошко-вые)

Для тех же целей, что и стали Р6М5К5 и Р9М4К8; обладают лучшей шлифуемостью, менее деформируются при термообработке, обладают большей прочностью, показывают более стабильные эксплуатационные свойства.

8.3. Твердые сплавы (ГОСТ 3882-74)

Твердые сплавы содержат смесь зерен карбидов, нитридов, карбонитридов тугоплавких металлов в связующих материалах. Стандартные марки твердых сплавов выполнены на основе карбидов вольфрама, титана,тантала. В качестве связки используется кобальт. Состав и основные свойства некоторых марок твердых сплавов для режущих инструментов приведены в таблице.

Физико-механические свойства одно-, двух- и трехкарбидных твердых сплавов

сплава

Коэффициент теплопроводности, Вт/(м Ч К)

Коэффициент удельной теплоемкости Дж/(кг Ч К)

Коэффициент линейного расширения,

Х 10 6 К -1

Предел прочности при изгибе,

Предел прочности при сжатии, Мпа

ТТ20К9

сплава

s u32 , МПа

s сж , МПа

КНТ16

В зависимости от состава карбидной фазы и связки обозначение твердых сплавов включает буквы, характеризующие карбидообразующие элементы (В – вольфрам, Т – титан, вторая буква Т – тантал) и связку (буква К- кобальт). Массовая доля карбидообразующих элементов в однокарбидных сплавах, содержащих только карбид вольфрама, определяется разностью между 100% и массовой долей связки (цифра осле буквы К), например, сплав ВК4 содержит 4% кобальта и 96% WC. Вдвухкарбидных WC+TiC сплавах цифра после буквы карбидообразующего элемента определяется массовая доля карбидов этого элемента, следующая цифра – массовая доля связки, остальное – массовая доля карбида вольфрама (например, сплав Т5К10 содержит 5% TiC,10% Co и 85% WC).

В трехкарбидных сплавах цифра после букв ТТ означает массовую долю карбидов титана и тантала. Цифра за буквой К – массовая доля связки, остальное- массовая доля карбида вольфрама (например, сплав ТТ8К6 содержит 6% кобальта, 8% карбидов титана и тантала и 86% карбида вольфрама).

В металлообработке стандартом ISO выделены три группы применяемости твердосплавного режущего инструмента: группа Р – для обработки материалов, дающих сливную стружку; группа К – стружку надлома и группа М – для обработки различных материалов (универсальные твердые сплавы). Каждая область разделяется на группы и подгруппы.

Твердые сплавы, в основном, выпускаются в виде различных по форме и точности изготовления пластин: напайных (наклеиваемых) – по ГОСТ 25393-82 или сменных многогранных – по ГОСТ 19043-80 – 19057-80 и другим стандартам.

Многогранные пластины выпускаются как из стандартных марок твердых сплавов, так и из этих же сплавов с однослойными или многослойными сверхтвердыми покрытиями из TiC, TiN, оксида алюминия и других химических соединений. Пластины с покрытиями обладают повышенной стойкостью. К обозначению пластин из стандартных марок твердых сплавов с покрытием нитридов титана добавляют – маркировку букв КИБ (ТУ 2-035-806-80), а к обозначению сплавов по ISO – букву С.

Выпускаются также пластины и из специальных сплавов (например, по ТУ 48-19-308-80). Сплавы этой группы (группы "МС") обладают более высокими режущими свойствами. Обозначение сплава состоит из букв МС и трехзначного (для пластин без покрытий)или четырехзначного (для пластин с покрытием карбидом титана) числа:

1-я цифра обозначения соответствует области применения сплава по классификации ISO (1 – обработка материалов, дающих сливную стружку; 3 – обработка материалов, дающих стружку надлома; 2 – область обработки, соответствующая области М по ISO);

2-я и 3-я цифры характеризуют подгруппу применяемости, а 4-я цифра – наличие покрытия. Например, МС111 (аналог стандартного Т15К6), МС1460 (аналог стандартного Т5К10) и т.д.

Кроме готовых пластин выпускаются также заготовки в соответствии с ОСТ 48-93-81; обозначение заготовок то же, что и готовых пластин, но с добавлением буквы З.

Безвольфрамовые твердые сплавы широко применяются как материалы, не содержащие дефицитных элементов. Безвольфрамовые сплавы поставляются в виде готовых пластин различной формы и размеров, степеней точности U и М, а также заготовок пластин. Области применения этих сплавов аналогичны областям использования двухкарбидных твердых сплавов при безударных нагрузках.

Марки

Применяется для

Чистового точения с малым сечением среза, окончательного нарезания резьбы, развертывания отверстий и других аналогичных видов обработки серого чугуна, цветных металлов и их сплавов и неметаллических материалов (резины, фибры, пластмассы, стекла, стеклопластиков и т.д.). Резки листового стекла

Чистовой обработки (точения, растачивания, нарезания резьбы, развертывания) твердых, легированных и отбеленных чугунов, цементированных и закаленных сталей, а также высокоабразивных неметаллических материалов.

Чернового точения при неравномерном сечении среза чернового и чистового фрезерования, рассверливания и растачивания нормальных и глубоких отверстий, чернового зенкерования при обработке чугуна, цветных металлов и сплавов, титана и его сплавов.

ВК6-ОМ

Чистовой и получистовой обработки твердых, легированных и отбеленных чугунов, закаленных сталей и некоторых марок нержавеющих высокопрочных и жаропрочных сталей и сплавов, особенно сплавов на основе титана, вольфрама и молибдена (точения, растачивания, развертывания, нарезания резьбы, шабровки).

Получистовой обработки жаропрочных сталей и сплавов, нержавеющих сталей аустенитного класса, специальных твердых чугунов, закаленного чугуна, твердой бронзы, сплавов легких металлов, абразивных неметаллических материалов, пластмасс, бумаги, стекла. Обработки закаленных сталей, а также сырых углеродистых и легированных сталей при тонких сечениях среза на весьма малых скоростях резания.

ТТ8К6

Чистового и получистового точения, растачивания, фрезерования и сверления серого и ковкого чугуна, а также отбеленного чугуна. Непрерывного точения с небольшими сечениями среза стального литья, высокопрочных, нержавеющих сталей, в том числе и закаленных. Обработки сплавов цветных металлов и некоторых марок титановых сплавов при резании с малыми и средними сечениями среза.

Чернового и получернового точения, предварительного нарезания резьбы токарными резцами, получистового фрезерования сплошных поверхностей, рассверливания и растачивания отверстий, зенкерования серого чугуна, цветных металлов и их сплавов и неметаллических материалов.

Чернового течения при неравномерном сечении среза и прерывистом резании, строгании, чернового фрезерования, сверления, чернового рассверливания, чернового зенкерования серого чугуна, цветных металлов и их сплавов и неметаллических материалов. Обработки нержавеющих, высокопрочных и жаропрочных труднообрабатываемых сталей и сплавов, в том числе сплавов титана.

ВК10-ОМ

Черновой и получерновой обработки твердых, легированных и отбеленных чугунов, некоторых марок нержавеющих, высокопрочных и жаропрочных сталей и сплавов, особенно сплавов на основе титана, вольфрама и молибдена. Изготовления некоторых видов монолитного инструмента.

ВК10-М

Сверления, зенкерования, развертывания, фрезерования и зубофрезерования стали, чугуна, некоторых труднообрабатываемых материалов и неметаллов цельнотвердосплавным, мелкоразмерным инструментом. Режущего инструмента для обработки дерева. Чистового точения с малым сечением среза (типа алмазной обработки); нарезания резьбы и развертывания отверстий незакаленных и закаленных углеродистых сталей.

Т15К6

Получернового точения при непрерывном резании, чистового точения при прерывистом резании, нарезания резьбы токарными резцами и вращающимися головками, получистового и чистового фрезерования сплошных поверхностей, рассверливания и растачивания предварительно обработанных отверстий, чистового зенкерования, развертывания и других аналогичных видов обработки углеродистых и легированных сталей.

Т14К8

Чернового точения при неравномерном сечении среза и непрерывном резании, получистового и чистового точения при прерывистом резании; чернового фрезерования сплошных поверхностей; рассверливания литых и кованых отверстий, чернового зенкерования и других подобных видов обработки углеродистых и легированных сталей.

Т5К10

Чернового точения при неравномерном сечении среза и прерывистом резании, фасонного точения, отрезки токарными резцами; чистового строгания; чернового фрезерования прерывистые поверхностей и других видов обработки углеродистых и легированных сталей, преимущественно в виде поковок, штамповок и отливок по корке и окалине.

Т5К12

Тяжелого чернового точения стальных поковок, штамповок и отливок по корке с раковинами при наличии песка, шлака и различных неметаллических включении, при неравномерном сечении среза и наличии ударов. Всех видов строгания углеродистых и легированных сталей.

ТТ7К12

Тяжелого чернового точения стальных поковок, штамповок и отливок по корке с раковинами при наличии песка, шлака и различных неметаллических включений при равномерном сечении среза и наличии ударов. Всех видов строгания углеродистых и легированных сталей. Тяжелого чернового фрезерования и углеродистых и легированных сталей.

ТТ10К8

Черновой и получистовой обработки некоторых марок труднообрабатываемых материалов, нержавеющих сталей аустенитного класса, маломагнитных сталей и жаропрочных сталей и сплавов, в том числе титановых.

ТТ20К9

Фрезерования стали, особенно фрезерования глубоких пазов и других видов обработки, предъявляющих повышенные требования к сопротивлению сплава тепловыми механическим циклическим нагрузкам.

8.4. Минералокерамика (ГОСТ 26630-75) и сверхтвердые материалы

Минералокерамические инструментальные материалы обладают высокой твердостью, тепло- и износостойкостью. Их основой являются глинозем (оксид кремния)- оксидная керамика или смесь оксида кремния с карбидами, нитридами и другими соединениями (керметы). Основные характеристики и области применения различных марок минералокерамики приведены в таблице. Формы и размеры сменных многогранных керамических пластин определены стандартом ГОСТ 25003-81*.

Кроме традиционных марок оксидной керамики и керметов широко применяются оксидно-нитридная керамика (например, керамика марки "кортинит" (смесь корунда или оксида алюминия с нитридом титана) и нитридно-кремниевая керамика- "силинит-Р" .

Ссылка на основную публикацию