На рисунке изображено условное графическое обозначение

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D – Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

Читайте также:  Обозначение электродов по роду и полярности

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В – ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! "Нет" – значит p-n-p (П-Н).

Ну, а если идём, и не упираемся в "стенку", то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Читайте также:  Расчет мощности трансформатора онлайн калькулятор

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – "сборщик" (глагол Collect – "собирать"). Вывод базы помечают как B, от слова Base (от англ. Base – "основной"). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – "эмитент" или "источник выбросов". В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Классификация и система обозначений цифровых микросхем

Логические элементы ЭВТ

Цифровые микросхемы предназначены для преобразования и обработки сигналов, изменяющихся по законам дискретной функции. Они применяются для построения ЦВМ, а также цифровых узлов измерительных приборов, аппаратуры автоматического управления, связи и т. д.

По конструктивно-технологическому исполнению все цифровые ИС делятся на группы. По характеру выполняемых функций в аппаратуре ИС подразделяются на подгруппы (например, логические элементы, триггеры и т.д.) и виды внутри подгрупп (например, триггеры с задержкой, триггеры универсальные и т.д.). Разделение цифровых ИС на подгруппы и виды по функциональному назначению приведены в таблице 1.3.1.1.

Таблица 1.3.1.1. Подгруппы и виды ЦИС

Подгруппа и вид ИС Обозначение
Схемы арифметических и дискретных устройств: ИА
шифраторы ИВ
дешифраторы ИД
счетчики ИЕ
комбинированные ИК
полусумматоры ИЛ
сумматоры ИМ
прочие ИП
регистры ИР
Логические элементы
И-НЕ ЛА
И-НЕ/ИЛИ-НЕ ЛБ
расширители ЛД
ИЛИ-НЕ ЛЕ
И ЛИ
И-ИЛИ-НЕ/И-ИЛИ ЛК
ИЛИ ЛЛ
ИЛИ-НЕ/ИЛИ ЛМ
НЕ ЛН
прочие ЛП
И-ИЛИ-НЕ ЛР
И-ИЛИ ЛС
Схемы запоминающих устройств (ЗУ)
ассоциативные ЗУ РА
матрицы постоянных ЗУ РВ
матрицы оперативных ЗУ РМ
постоянные ЗУ (масочные) РЕ
прочие РП
постоянные ЗУ с возможностью многократного электрического перепрограммирования РТ
оперативные ЗУ РУ
постоянные ЗУ с ультрафиолетовым стиранием и электрической записью информации РФ
Триггеры
универсальные (типа JK) ТВ
динамические ТД
комбинированные ТК
Шмитта ТЛ
с задержкой (типа D) ТМ
прочие ТП
с раздельным запуском (типа RS) ТР
счетные (типа Т) ТТ

Сведения о подгруппе и виде микросхемы содержатся в ее условном обозначении.

В соответствии с ГОСТ 17021 — 75 обозначение цифровых ИС должно состоять из четырех элементов. Первый из них — цифра (1, 5, 7), обозначающая группу ИС. Она определяется конструктивно-технологическим исполнением ИС. Второй элемент — две или три цифры (от 00 до 99 либо от 000 до 999), указывающие порядковый номер разработки серии ИС. Третий элемент — две буквы, обозначающие подгруппу и вид микросхемы, определяющие основные функциональные назначения ИС (таблица). Четвертый элемент — число, обозначающее порядковый номер разработки ИС по функциональному признаку в данной серии.

Два первых элемента обозначают серию ИС. Под серией понимают совокупность типов ИС, которые могут выполнять различные функции, имеют единое конструктивно-технологическое исполнение и предназначены для совместного приме нения.

Пример условного обозначения интегральной полупроводниковой логической микросхемы К155ЛА3, представляющей логичесий элемент И-НЕ с порядковым номером разработки серии — 55, порядковым номером разработки данной схемы в серии по функциональному признаку — 3 приведен ниже (рисунок 1.3.1.1.)

Рисунок 1.3.1.1.

При необходимости разработчик ИС имеет право после порядкового номера разработки ИС по функциональному признаку в данной серии дополнительно поместить букву (от А до Я), обозначающую отличие электрических параметров ИС одного типа (например, 531ЛА1П). Конечная буква при маркировке может быть заменена точкой. Цвет ее указывается в технических условиях (ТУ) на ИС конкретных типов. Для микросхем, используемых в устройствах широкого применения, в начале обозначения добавляется буква К.(например, К1533ЛАЗ). Как правило, ИС с буквой К отличаются от микросхем, не имеющих ее, условиями приемки на заводе-изготовителе, т. е. отличаются не только диапазоном температур, при которых они могут быть использованы, но и численными значениями некоторых параметров.

Читайте также:  Перосъемная машина для кур бройлеров своими руками

В последнее время для некоторых ИС после буквы К ставится дополнительная буква, указывающая особенность конструктивного исполнения (например, КР, КМ, КФ).

Для бескорпусных ИС перед цифровым обозначением серии добавляют букву Б, а после обозначения порядкового номера разработки ИС по функциональному признаку в данной серии (или после дополнительного буквенного обозначения) через дефис указывают цифру, характеризующую модификацию конструктивного исполнения (например, Б133ЛА3-1). В таблице приведены обозначения конструктивного исполнения для различных модификаций бескорпусных ИС.

Модификация конструктивного исполнения бескорпусных интегральных мікросхем (таблица 1.3.1.2)

Таблица 1.3.1.2.

Характеристика конструктивного исполнения микросхем (модификация) Обозначение конструктивного исполнения
С гибкими выводами С ленточными (паучковыми) выводами С жесткими выводами На обшей пластине (нераздельные) Раздельные без потери ориентировки С контактными площадками без выводов (кристалл)

Согласно ГОСТ 2.743-82 условное графическое обозначение (УГО) элемента цифровой логики имеет форму прямоугольника, к которому подводят линии выводов. УГО элементов может содержать три поля: основное и два дополнительных. Дополнительные поля располагают слева и справа от основного. Допускается дополнительные поля разделять на зоны, которые отделяют горизонтальной чертой. В первой строке основного поля помещают обозначение функции, выполняемой элементом. В дополнительных полях помещают информацию о функциональных назначениях выводов. Линии выводов характеризуются меткой и указателем. Метка – это наименование вывода. Указатель характеризует свойства вывода. Входы элемента изображают с левой стороны УГО, выходы – с правой стороны.

Размеры УГО определяются по высоте:

– количеством линий выводов;

– количеством строк информации в основном и дополительных полях;

по ширине:

– наличием дополнительных полей;

– количеством знаков, помещаемых в одной строке внутри УГО;

Расстояние между линиями выводов должно быть не менее и кратным величине «С» (минимальное «С» = 5 мм).

Расстояние между горизонтальной стороной УГО, границей зоны и линией вывода должно быть не менее и кратным «С/2» (рисунок 1.3.2.1.)

Рисунок 1.3.2.1.

Начертание и размеры условных графических обозначений (далее для краткости — УГО) элементов должны быть такими, как указано в стандартах.

Составляя схему устройства, следует придерживаться общепринятого правила вход — слева, выход — справа

УГО наиболее часто встречающихся в схемах элементов и их размеры в масштабе 1:1 приведены на рисунке. Возле каждого элемента (желательно сверху или справа) должно быть указано его позиционное обозначение (R1, R2.. , С1, С2 и г д.). Нумеровать элементы необходимо слева направо — сверху вниз, например, так:

Для упрощения схем нередко используют слияние линий электрической связи в одну так называемую групповую линию связи, которую изображают утолщенной линией. В непосредственной близости от мест входа в групповую линии обычно нумеруют. Вместо номеров можно использовать буквенные обозначения сигналов, иногда это упрощает чтение схемы. Минимальное расстояние между соседними линиями, отходящими от групповой в разные стороны, должно быть не менее 2 мм (в масштабе 1:1). Линии, выходящие из конца линии групповой связи, изображают линиями нормальной толщины.

УГО микросхем цифровой и аналоговой техники построены на основе прямоугольников, называемых полями. УГО простейших устройств (например, логических элементов) состоят только из основного поля, в более сложных к нему добавляют одно или два дополнительных, располагаемых слева и справа. В основном поле помещают надписи и знаки, обозначающие функциональное назначение элемента или микросхемы, в дополнительных – так называемые метки, поясняющие назначение выводов. Ширина полей определяется числом знаков (с учетом пробелов) Минимальная ширина основного поля – 10, дополнительных – 5 мм. Расстояние между выводами, а также между выводом и горизонтальной стороной УГО или границей зоны, отделяющей одни выводы от других, – 5 мм (все размеры в масштабе 1:1).

В местах присоединения линий-выводов изображают специальные знаки (указатели), характеризующие их особые свойства, небольшой кружок (инверсия), наклонную черточку ("/" – прямой, "" – инверсный динамический вход), крестик (вывод, не несущий логической информации, например, вывод питания).

В правом поле УГО цифровых микросхем иногда помещают знаки, построенные на основе ромбика. Если он снабжен черточкой сверху, это означает, что данный вывод соединен с коллектором р-п-р транзистора, эмиттером n-p-п транзистора, стоком полевого с р-каналом или истоком транзистора с n-каналом. Если же названные электроды принадлежат транзисторам противоположной структуры или приборам с каналом противоположного типа, черточку помещают снизу. Ромбиком с черточкой внутри обозначают вывод с так называемым состоянием высокого выходного сопротивления (Z-состоянием)

Чтобы не загромождать схему цепями питания цифровых микросхем, соответствующие выводы в их УГО обычно не изображают, а чтобы было ясно, к каким выводам подводится питание, в местах, откуда оно поступает (выход источника питания, цепь, к которой подключается внешний источник), помещают стрелки с адресами, например, "К выв. 14 DD1, DD2, выв 10 DD3, DD4, выв. 16 DD5, DD6"

И, наконец, – об УГО используемых в структурных и функциональных схемах. Их основа – квадрат, в котором указывается функциональное назначение устройства. В частности, символ генератора помимо буквы G, может содержать область частот (одна синусоида – низкие частоты, две – звуковые, три – высокие), конкретное значение частоты (например, 500 кГц), форму колебаний в виде упрощенной осциллограммы, наличие стабилизации частоты и т. д.

Два или три символа синусоиды используют также для указания назначения фильтров, но здесь они обозначают полосы частот. Например, в УГО фильтров верхних (ФВЧ) и нижних частот (ФНЧ) две синусоиды символизируют колебания частот, лежащих выше и ниже частоты раздела (в первом случае зачеркнута нижняя синусоида, следовательно, устройство пропускает сигналы с частотой выше частоты среза, во втором — верхняя, что говорит о пропускании сигналов ниже этой частоты). В УГО полосового и режекторного фильтров — три синусоиды. Как и в предыдущем случае, пропускаются полосы частот, обозначенные не зачеркнутыми синусоидами: если зачеркнуты верхняя и нижняя, — фильтр полосовой, а если средняя, — режекторный.

Усилители обозначают либо квадратом с треугольником — символом усиления — внутри, либо равносторонним треугольником (вершина с выводом выхода — направление передачи сигнала). Предпочтительно второе УГО: оно более наглядно и к тому же позволяет указать в нем, например, число каскадов устройства (его вписывают в треугольник).

УГО линий задержки вместо символов сосредоточенных и распределенных параметров могут содержать численное значение времени задержки, а также знаки, обозначающие способ преобразования: пьезоэлектрический (в виде символа кварцевого резонатора), маг-нитострикционный (две горизонтально расположенные полуокружности) (рисунок 1.3.2.2.)

Ссылка на основную публикацию