Содержание
Оглянитесь вокруг. Так или иначе, но вы со стопроцентной вероятностью наткнетесь на что-то, чьим компонентом является элемент Ferrum. Он же – железо. Даже телефон, планшет или компьютер, с помощью которого вы читаете данную статью, также содержит в себе железо.
Феррум является четвертым по многочисленности элементом на нашей планете. Являясь настолько популярным, оно максимально упрощает процесс собственной добычи. К сожалению, в чистом виде оно все-таки не встречается, потому – придется добывать его из руды. Благо, извлечь его из минералов и получить чистый «Fe» намного проще, чем, скажем, уран или даже алюминий.
В данной статье мы рассмотрим вопрос, что делают из железной руды, как из нее добывается железо и куда его применяют.
Свойства руд
Отвечать на вопрос: какими свойствами обладает железная руда, не совсем просто. Хотя бы потому, что перечень свойств зависит от процента данного металла в руде и количества посторонних примесей. К примеру, красный железняк, содержащий гематит (Fe2O3), содержит в себе целых 70% железа от общего количества.
В общем и целом, кстати, целесообразной добычей железа считается только та, где в рудах содержится от 40% железа и выше. Данная цифра действительно дает понять, что железо распространено в окружающем мире многократно больше других элементов. К примеру, для того же урана, содержание его в руде в количестве 2% считалось бы небывалой удачей…
Но вернемся к нашему красному железняку. Давая характеристику железной руде, можно сказать, что красный железняк представляет собой диапазон от порошкового вещества до плотного.
Лимонит (он же – бурый железняк), также является рудой железа, однако она представляет собой пористую и рыхлую породу, содержащую весомые доли фосфора и марганца. Пустой породой у него часто выступает глина. В силу чего, кстати, довольно легко поддается извлечению железа. Потому из него часто делают чугун.
Шпатовый железняк с сидеритом во главе является довольно редким минералом, что не делает его производственным ресурсом. Он также содержит в себе довольно много глины.
Черно-синие магнитные руды по своей насыщенности железу могут не уступать красному железняку. Но главной их особенностью является, конечно, свойства магнетизма. Пусть они и теряются с сильным повышением температуры. Пусть железняк магнитный намного реже других, но польза его очевидна.
Способы добычи железа из руды
Железо из руды наиболее часто получают в доменных печах. Принцип работы такого способа заключается в восстановлении железа из его оксидов с помощью угля, в виде кокса. Уголь, окислившись в печи под воздействием кислорода, превращается в угарный газ (СО). Затем, нагретый в печи угарный газ взаимодействует с оксидом железа (Fe2O3), вследствие чего получаются молекулы углекислого газа и молекулы восстановленного железа.
Полученное железо все еще не является идеально чистым. Дабы устранить его от всяческих рудных примесей, далее используется флюс. Флюсом называют карбонаты кальция или магния (в простонародье – известняк и доломит). При нагревании до 1000 градусов по Цельсию, карбонаты распадаются на свои оксиды с выделением углекислого газа.
Далее, оксид кальция или магния вступает в реакцию с примесями железа (например – с кварцем)
Получившийся в результате шлак очень легко плавится в печи. Он плавает на поверхности, что позволяет довольно легко отделить его от железа. Такой расплав железа является все равно не самым чистым из-за существенного присутствия атомов карбона (уголь). А сплав железа с углеродом называется чугуном.
Железо довольно активный элемент, потому весьма податлив коррозии. Потом, не стоит оставлять под открытым небом или в местах с повышенной влажностью предметы с высоким содержанием железа.
Добыча железа в России и мире
Россия в плане добычи железной руды может похвастаться лишь 5-6% от общемирового уровня. Но что касается запасов для потенциально дальнейшей добычи – здесь уверенное первое место. 18% от всей мировой железной руды находятся именно в России. На втором и третьем месте – Бразилия с Австралией. Почетное четвертое место досталось «сожителю по СССР» — Украине, 11 процентов.
В Российской Федерации наибольшим месторождением железной руды является Курская магнитная аномалия. Она же, кстати, является крупнейшим месторождением всей планеты. Запасы залегающего там необработанного железа исчисляются 30 миллиардами тонн.
Применение железа
Примечательным можно считать тот факт, что из самого Феррума, в его химически чистой форме, в мире практически ничего не делается и не производится. Данный элемент очень легко окисляется, вступая в реакции в кислородом или другими элементами. Так для чего нужна железная руда? Все просто. Феррум, обогащенный карбоном (сплав чугуна) – весьма и весьма популярный материал. Чугун может или служить самостоятельной единицей для изготовления каких-либо вещей и предметов, или же быть промежуточным звеном между железом, и сталью.
Сталь – это сплав железа, углерода и других элементов. Железа должно быть не менее 45%, карбона – от 0,02 до 2,14 процента. Если выше 2,14% – это уже чугун. И уж сталь-то, в десятках своих вариаций, в наше время используется практически везде. Машиностроение, авиация, приборостроение, космические постройки, ядерная энергетика, медицина (существует даже термин – хирургическая сталь), оружейная отрасль (как холодное, так и огнестрельное), сельхозинвентарь, строительная продукция и т.д. За счет такой популярности стали, смело можно утверждать, что ни один металл периодической таблицы не используется так интенсивно и в таких количествах на Земле, как железо.
Действительно, сфер производства продукции железной руды, а также соединений и сплавов на основе Феррума – просто не счесть. Однако, в будущем, при таких темпах и масштабах добычи, перед человечеством могут встать два вопроса: что делать, когда запасы этого металла в недрах нашей планеты станут иссякать? И как поступать с теми гигантскими котлованами по всей планете, которые остаются после проведения добычи железной руды открытым способом.
Соединения железа:
Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия.
На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.
Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.
Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.
Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).
Рис. Строение атома железа.
Электронная конфигурация атома железа – 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.
Рис. Степени окисления железа: +2, +3.
Физические свойства железа:
- металл серебристо-белого цвета;
- в чистом виде достаточно мягкий и пластичный;
- хобладает хорошей тепло- и электропроводимостью.
Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.
Химические свойства железа
- реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe2O3, Fe3O4):
3Fe + 2O2 = Fe3O4; - окисление железа при низких температурах:
4Fe + 3O2 = 2Fe2O3; - реагирует с водяным паром:
3Fe + 4H2O = Fe3O4 + 4H2; - мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
Fe + S = FeS; 2Fe + 3Cl2 = 2FeCl3; - при высоких температурах реагирует с кремнием, углеродом, фосфором:
3Fe + C = Fe3C; - с другими металлами и с неметаллами железо может образовывать сплавы;
- железо вытесняет менее активные металлы из их солей:
Fe + CuCl2 = FeCl2 + Cu; - с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
Fe + 2HCl = FeCl2 + H2; - с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N2, N2O, NO2).
Получение и применение железа
Промышленное железо получают выплавкой чугуна и стали.
Чугун – это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).
Чистое железо получают:
- в кислородных конверторах из чугуна;
- восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
- электролизом соответствующих солей.
Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.
Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).
Рис. Доменная печь.
Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.
Рис. Процесс выплавки чугуна в доменной печи.
- обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
- процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
- 450-500°C – 3Fe2O3 + CO = 2Fe3O4 + CO2;
- 600°C – Fe3O4 + CO = 3FeO + CO2;
- 800°C – FeO + CO = Fe + CO2;
- часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.
Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.
Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.
Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.
Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.
Биологическая роль железа:
- в организме взрослого человека содержится около 5 г железа;
- железо играет важную роль в работе кроветворных органов;
- железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).
Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:
Код кнопки:
Часть 1. Зачем все это надо?
Если речь идет о создании реплики исторического артефакта (например, ножа или топора Х века), то перед мастером стоит как минимум 3 задачи:
1. Повторить внешний вид. Другими словами, создать масса-габаритную модель. Пример реплика топора из могильника Якштайчай, Литва. Топор изготовлен с соблюдением размеров оригинала.
По внешнему виду средневековое оружие исследовали такие известные авторы как Эвард Окшотт, Ян Петерсен, Анатолий Кирпичников.
2. Структура кованого изделия. Большинство средневековых артефактов изготовлено, говоря современным языком, как минимум, из двух разных марок сталей. Тут речь идет о технологии кузнечной сварки, о технологии изготовления дамасской стали. Из-за дороговизны углеродистой стали в средние века, широко применялась технология, когда только рабочая часть изделия (например, в ноже это лезвие) была стальной, а все остальное изготавливалось из железа или низкокачественной стали.
Подробнее эта тема рассмотрена на практике на примере ковки клинка скрамасакса. О структуре средневековых кованых изделий можно судить по таким книгам как «Дамасская сталь в странах бассейна Балтийского моря» Антейн А.К. и «Кузнечное ремесло Полоцкой земли. IX–XIII вв.» Гурин, М.Ф.
3. Собственно металл. Сталь Х века и сталь ХХI века это 2 принципиально разных по способу получения материала. И как следствие, свойства этих материалов отличаются. Вероятно, из-за этих отличий и получило широкое распространение такое направление в кузнечном деле как дамасская сталь. Топор из сыродутного железа.
Основной способ получения железа в средние века – плавка болотной руды в сыродутных горнах. Суть сыродутного процесса в том, что воздух для горения топлива подается не подогретым, атмосферных параметров.
Конструкция средневековых печей описана в книге Бориса Колчина «Черная металлургия и металлообработка в Древней Руси».
Часть 2. Сырье и подготовка к плавке.
Болотная руда — это бурый железняк, или лимонит. Основное из чего она состоит это Fe2O3. Вот так выглядит в природе.
Восстанавливается руда до чистого металла древесным углем. Перед плавкой руду обогащают путем промывки от лишней породы.
Далее – прожиг руды. При прожиге выгорает органика, руда приобретает характерный красноватый оттенок и хорошо притягивается к магниту. После прожига руду легче измельчить.
Первую плавку руды я сделал в графито-шамотном тигле в камере газового горна. Из 400 грамм руды получилось 160 грамм железа. Слиток пористый, поры чистые без неметаллических вкраплений.
Был сделан спектральный анализ этого слитка на легирующие элементы и примеси.
Анализ показал содержание углерода – 0.14%. Вероятно, углерод поступил в железо из древесного угля, в следствии процесса цементации поверхности. Вероятно, длительное нахождения слитка железа в области высоких температур обеспечило хорошую диффузию углерода, и как следствие равномерное его распределение по всему объему образца. Таким образом мы можем говорить о получении низкоуглеродистой стали. Высокое содержание фосфора и серы (1.49% и 0.075% соответственно) ощутимо снижает качество металла и с точки зрения кузнечной обработки, и с точки зрения эксплуатации будущих изделий. Чтобы уменьшить содержание серы и фосфора в состав шихты (Шихта — Смесь материалов, загруженных в плавильную печь для получения металла определённого состава.) следует ввести оксид кальция СаO (негашеная известь). Например, добавить мел CaCO3. В области высоких температур (1000-1100 ОС) внутри горна мел станет негашеной известью.
Часть 3. Плавка руды в аутентичных сыродутных горнах.
22-23.07.2017 в музейном комплексе «Дудутки» на фестивале славы белорусского оружия «Наш Грюнвальд-2017» состоялась плавка руды в сыродутных горнах. Цель этого эксперимента получить практические ответы на следующие вопросы:
1. Материалы и конструкция сыродутных горнов.
2. Способ подачи воздуха для горения топлива. Режимы дутья.
4. Шлакообразование и его влияние на процесс плавки.
5. Получение чистого металла.
6. Получение металла лучшего качества, чем при первой плавке в тигле.
Забегая вперед могу сказать, что все поставленные задачи были решены. Было изготовлено 2 сыродутных горна из разных материалов, разной конструкции и размера. Один из двух горнов был изготовлен из местного сырья, воздух подавался двухкамерными кузнечными мехами.
Постройка горнов, их сушка, прогрев и последующая плавка – очень трудоемкая задача. Весь процесс занял 2 дня, работы велись с самого утра и до поздней ночи с учетом того, что мне помогала целая команда помощников. Эксперимент удачный – полученный металл примерно в 7 раз чище по вредным примесям в сравнении с тигельной плавкой. Однако металла получилось немного. Основной объем – это небольшие металлические шарики в кусках шлака.
Вероятно, если создать бОльшую температуру в горне и увеличить время плавки, то эти шарики сварятся вместе и образуют годную для ковки крицу. Спектральный анализ не определил содержание углерода, вероятно, из-за его неравномерного распределения в слитке. Вероятно, это также косвенно говорит о необходимости увеличения времени плавки. Проведенный эксперимент показал, что основные параметры выбраны в целом верно, значит их оптимизация приведет к улучшению результата. Об этом я напишу позже, по мере развития событий.