Как читается второй закон кирхгофа

Первый закон Кирхгофа

Определение первого закона звучит так: «Алгебраическая сума токов, протекающих через узел, равна нулю». Можно сказать немного в другой форме: «Сколько токов втекло в узел, столько же и вытекло, что говорит о постоянстве тока».

Узлом цепи называют точку соединения трех и больше ветвей. Токи в таком случае распределяются пропорционально сопротивлениям каждой ветви.

Такая форма записи справедлива для цепей постоянного тока. Если использовать первый закон Кирхгофа для цепи переменного тока, то используются мгновенные значения напряжений, обозначаются буквой İ и записывается в комплексной форме, а метод расчета остаётся прежним:

Комплексная форма учитывает и активную и реактивную составляющие.

Второй закон Кирхгофа

Если первый описывает распределение токов в ветвях, то второй закон Кирхгофа звучит так: «Сумма падений напряжений в контуре равна сумме всех ЭДС». Простыми словами формулировка звучит так: «ЭДС, приложенное к участку цепи, распределится по элементам данной цепи пропорционально сопротивлениям, т.е. по закону Ома».

Тогда как для переменного тока это звучит так: «Сумма амплитуд комплексных ЭДС равняется сумме комплексных падений напряжений на элементах».

Z – это полное сопротивление или комплексное сопротивление, в него входит и резистивная часть и реактивная (индуктивность и ёмкость), которая зависит от частоты переменного тока (в постоянном токе есть только активное сопротивление). Ниже представлены формулы комплексного сопротивления конденсатора и индуктивности:

Вот картинка, иллюстрирующая вышесказанное:

Методы расчетов по первому и второму законам Кирхгофа

Давайте приступим к применению на практике теоретического материала. Чтобы правильно расставить знаки в уравнениях, нужно выбрать направление обхода контура. Посмотрите на схему:

Предлагаем выбрать направление по часовой стрелке и обозначить его на рисунке:

Штрих-пунктирной линией обозначено, как идти по контуру при составлении уравнений.

Следующий шаг – составить уравнения по законам Кирхгофа. Используем сначала второй. Знаки расставляем так: перед электродвижущей силой ставится минус, если она направлена против движения часовой стрелки (выбранное нами в предыдущем шаге направление), тогда для ЭДС направленного по часовой стрелке – ставим минус. Составляем для каждого контура с учетом знаков.

Для первого смотрим направление ЭДС, оно совпадает со штрих-пунтирной линией, ставим E1 плюс E2:

Знаки у IR (напряжения) зависят от направлением контурных токов. Здесь правило знаков такое же, как и в предыдущем случае.

IR пишется с положительным знаком, если ток протекает в сторону направления обхода контура. А со знаком «–», если ток течет против направления обхода контура.

Направление обхода контура — это условная величина. Нужна она только для расстановки знаков в уравнениях, выбирается произвольно и на правильность расчётов не влияет. В отдельных случаях неудачно выбранное направление обхода может усложнить расчёт, но это не критично.

Рассмотрим еще одну цепь:

Здесь целых четыре источника ЭДС, но порядок расчета тот же, сначала выбираем направление для составления уравнений.

Читайте также:  Какие лампочки лучше поставить дома

Теперь нужно составить уравнения согласно первому закону Кирхгофа. Для первого узла (слева на схеме цифра 1):

I3 втекает, а I1, I4 вытекает, отсюда и знаки. Для второго:

Вопрос: «Узла четыре, а уравнения всего три, почему?». Дело в том, что число уравнений первого правила Кирхгофа равно:

Т.е. уравнений всего на 1 меньше, чем узлов, т.к. этого достаточно, чтобы описать токи во всех ветвях, советую еще раз подняться к схеме и проверить, все ли токи записаны в уравнениях.

Теперь перейдем к построению уравнений по второму правилу. Для первого контура:

Для второго контура:

Для третьего контура:

Если подставить значения реальных напряжений и сопротивлений, тогда выяснится, что первый и второй законы справедливы и выполняются. Это простые примеры, на практике приходится решать гораздо более объёмные задачи.

Вывод. Главное при расчётах с помощью первого и второго законов Кирхгофа – соблюдения правила составления уравнений, т.е. учитывать направления протекания токов и обхода контура для правильной расстановки знаков для каждого элемента цепи.

Законы Кирхгофа для магнитной цепи

В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.

Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:

F=w*I

Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:

Или магнитный поток через магнитное сопротивление:

L – средняя длина участка, μr и μ0 – относительная и абсолютная магнитная проницаемость.

Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:

То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?

Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM­­ ­­(магнитных напряжений).

Магнитный поток равен:

Для переменного магнитного поля:

Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.

В качестве примера рассмотрим такой контур:

Тогда для ABCD получится такая формула:

Для контуров с воздушным зазором выполняются следующие соотношения:

А сопротивление воздушного зазора (справа на сердечнике):

Где S — это площадь сердечника.

Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:

Открытия Густава Кирхгофа внесли весомый вклад в развитие науки, в особенности электротехники. С их помощью довольно просто рассчитать любой электрический или магнитный контур, токи в нём и напряжения. Надеемся, теперь вам стали более понятны правила Кирхгофа для электрической и магнитной цепи.

Похожие материалы:

Законы Кирхгофа (более корректно – правила Киргхгофа) применяются при расчете сложных (разветвленных) электрических цепей. Предлагаю рассмотреть их по очереди и начать, естественно, с первого.

Здесь:

  • I i – ток в узле,
  • n – число проводников, сходящихся в узле,
  • токи, втекающие в узел ( I1, In ) считаются положительными,
  • вытекающие токи ( I2, I3 ) – отрицательными.
Читайте также:  Как наточить лезвия жилет в домашних условиях

В таком виде этот закон звучит и выглядит, наверное, очень академично, поэтому предлагаю все несколько упростить.

Нарисуем разветвленную электрическую цепь в более привычном виде (рис.2) и дадим такую формулировку:

Сумма токов втекающих в узел равна сумме токов, вытекающих из узла.

Для этого случая формула первого закона Кирхгофа примет вид: I= I1+I2+. +In , что для повседневных вычислений гораздо удобнее.

ВТОРОЙ ЗАКОН КИРХГОФА

Второй закон Кирхгофа определяет зависимость между падениями напряжений и ЭДС в замкнутых контурах и имеет следующий вид (рис.3) и определение:

При отсутствии в контуре ЭДС сумма падений напряжений равна 0.

Теперь несколько пояснений по практическому применению этого правила Кирхгофа:

  • поскольку, алгебраическая сумма требует учета знака следует выбрать направление обхода контура ( на рис.3 – по часовой стреклке), токи и напряжения, совпадающие с этим направлением считать положительными, иные – отрицательными. При затруднении в определении направления тока, возьмите произвольное, если в результате вычислений получите результат со знаком "-", поменяйте выбранное направление на противоположенное.
  • для нашего примера можно записать:
    U1+U3-U2=0
    U4+U5-U3=0
  • кроме того, руководствуясь первым правилом Кирхгофа :
    Iвх – I1 – I2 = 0
    I1 – I3 – I4=0
    I4 – I5=0
    I2 + I3 + I5 – Iвых=0 ,

получаем систему из 6 уравнений, полностью описывающую рассматриваемую электрическую цепь.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Для расчета сложных цепей (содержащих два и более источников энергии) применяют методы, которые основаны на двух законах Кирхгофа. Законы применимы как для анализа цепей, так и для расчетов элементов и определения параметров цепей. В сложных цепях выделяют контуры, узлы (геометрические узлы, см. предыдущий рисунок, имеющие одинаковые потенциалы, объединяются в один), ветви (участки цепи между узлами – см. сложную цепь ниже).

Первый закон Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю, т.е. .

При составлении уравнений пользуются правилом: если ток входит в узел, то его в уравнение подставляют со знаком «+», если выходит – «-»:

,

то есть сумма токов приходящих к узлу цепи равна сумме токов уходящих из узла.

Второй закон Кирхгофа: алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжений на сопротивлениях этого контура:

.

Приведем правила составления уравнений по второму закону Кирхгофа. Для примера возьмем схему замещения электропитания автомобиля, см. рисунок. На схеме Е1 и Е2 соответственно ЭДС аккумуляторной батареи и электрического генератора, а Е3 – противо ЭДС стартерного электродвигателя. Ri сопротивления соединительных проводников.

Цепь содержит три контура, однако уравнения по второму закону составляются только для независимых контуров. Независимым называется контур, который содержит хотя бы одну ветвь, не вошедшую в предыдущие контуры. Независимых контуров в приведенной цепи два.

Уравнения составляют в следующей последовательности:

Читайте также:  Сколько стоит сантиметр сварочного шва полуавтоматом

− произвольно выбираем направление токов ветвях (направления токов обозначены стрелками);

− составляем уравнения по первому закону Кирхгофа для узлов. Количество уравнений n должно быть равно количеству узлов m без одного (n=m-1). Например, для верхнего узла:

;

− произвольно задаемся направлением обхода контуров (например, против часовой стрелки);

− составляем уравнения по второму закону Кирхгофа для независимых контуров. При составлении пользуются правилами: если направление ЭДС совпадает с направлением обхода контура, то в уравнение она подставляется со знаком «+», в противном случае с «-»; если направление тока в сопротивлении совпадает с направлением обхода контура, то падение напряжения подставляется со знаком «+», в противном случае со знаком «-».

Таким образом, для контуров I и II:

.

Получена система из трех уравнений, решая которую получим значения искомых токов.

Если в результате решения один из токов окажется отрицательным, то этот ток имеет направление, противоположное избранному на схеме. Кроме того, правильность вычисления токов можно проверить, составив уравнение по первому закону Кирхгофа (1.3) для узла схемы:

.

В качестве примера рассмотрим цепь, схема которой приведена на рис. 4. Схема цепи содержит 6 ветвей (m=6) и 4 узла: a, b, c, d (n=4). По каждой ветви проходит свой ток, следовательно число неизвестных токов равно числу ветвей, и для определения токов необходимо составить m уравнений. При этом по первому закону Кирхгофа (1.3) составляют уравнения для (n–1) узлов. Недостающие m–(n–1) уравнения получают по второму закону Кирхгофа (1.4), составляя их для m–(n–1) взаимно независимых контуров. Рекомендуется выполнять операции расчета в определенной последовательности.

1. Обозначение токов во всех ветвях. Направление токов выбираем произвольно, но в цепях с источниками ЭДС рекомендуется, чтобы направление токов совпадало с направлением ЭДС.

2. Составление уравнений по первому закону Кирхгофа. Выбираем 4–1=3 узла (a, b, c) и для них записываем уравнения:

3. Составление уравнений по второму закону Кирхгофа. Необходимо составить 6–3=3 уравнения. В схеме на рис. 4 выбираем контура I, II, III и для них записываем уравнения:

4. Решение полученной системы уравнений и анализ результатов. Полученная система из шести уравнений решается известными математическими методами. Если в результате расчетов численное значение тока получено со знаком «минус», это означает, что реальное направление тока данной ветви противоположно принятому в начале расчета. Если в ветвях с ЭДС токи совпадают по направлению с ЭДС, то данные элементы работают в режиме источников, отдавая энергию в схему. В тех ветвях, где направления тока и ЭДС не совпадают, источники ЭДС работает в режиме потребителя.

5. Проверка правильности расчетов. Для проверки правильности произведенных расчетов можно на основании законов Кирхгофа написать уравнения для узлов и контуров схемы, которые не использовались при составлении исходной системы уравнений:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10178 – | 7216 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ссылка на основную публикацию