Управление затвором полевого транзистора

Содержание

Рубрикатор

События

Наши новости

Новости

Подписка на новости

Опрос

Нужны ли комментарии к статьям? Комментировали бы вы?

Реклама

Ридли Рэй

Перевод: Иоффе Дмитрий

В этой статье мы возвращаемся к основам разработки преобразователя напряжения — как включить и как выключить мощный полевой транзистор (ПТ) в современном источнике питания с DC/DC преобразователем напряжения.

Непосредственное управление от контроллера ШИМ

В большинство современных микросхем контроллеров встроен выходной управляющий каскад. Обычно он содержит двухтактную схему на двух транзисторах. Этот выход можно использовать для непосредственного управления затвором мощного полевого транзистора, как показано на рис. 1.

Непосредственное подключение можно использовать в тех случаях, когда управляющая схема подключена к той же самой «земле», что и силовая часть, и уровень мощности относительно невелик.

Судя по справочным данным, ток в несколько ампер можно получить прямо с выхода контроллера ШИМ. Этого вполне достаточно для управления маломощными устройствами. Однако вход полевого транзистора имеет большую емкость. Кроме того, пытаться полностью использовать весь выходной ток контроллера, как правило, — плохая идея. Это может привести к увеличению электромагнитных помех из–за быстрого включения и выключения, непомерным потерям на обратное восстановление в выпрямителе и шумам в самом контроллере ШИМ. В результате могут возникать случайные сбои в работе и дрожание тактовой частоты.

Лучшее решение — ограничить выходной ток контроллера ШИМ при помощи схемы, показанной на рис. 2. В ней используются два резистора: один для управления временем включения, а другой — для управления временем выключения. (Обычно мы выключаем устройство быстрее, чем включаем, для защиты от коротких импульсов тока.) Диод служит для разделения этих двух функций, но в некоторых случаях, когда критично быстродействие схемы, можно обходиться без него.

В маломощных преобразователях мы обычно включаем ПТ медленно. Не надо бояться экспериментов с величиной сопротивления резистора Ron. Автор использует в своих проектах значения от 1 Ом до 1 кОм. Сформулированное им правило разработки заключается в том, чтобы увеличивать сопротивление, одновременно наблюдая за осциллограммами переключения и рассеиваемой мощностью ПТ. Если температура начинает заметно возрастать, нужно уменьшить величину сопротивления вдвое. Вы будете удивлены, увидев, как медленно можно включать ПТ в обратноходовом преобразователе, работающем в режиме прерывистых токов, без значительных потерь на переключение.

Выключение должно быть быстрым, чтобы обеспечить быстрый спад импульса тока. Экспериментируйте с разными значениями сопротивления, вместо того, чтобы просто использовать величины, приведенные в руководствах по применению. Более подробную информацию о том, насколько быстро можно управлять ПТ, можно найти в работе[3].

Специализированные драйверы затворов

При увеличении мощности преобразователя становится ясно, что сопротивления резисторов в затворе ПТ необходимо уменьшить, чтобы минимизировать потери на переключение. Для схем большой мощности в промышленности, как правило, используют микросхемы драйверов с большими выходными токами. При этом уменьшается влияние помех на контроллер ШИМ, и, кроме того, получается более удачная разводка печатной платы. В продаже имеется множество хороших драйверов. Можно даже создать собственный мощный двухтактный драйвер, если необходимо увеличить производительность при снижении цены. Для устройств большой мощности используют отдельную схему драйвера затвора для достижения быстрого переключения (рис. 3). Резисторы в затворе также имеются.

Изолированные драйверы затворов

Для получения очень высоких мощностей разработчики начинают использовать такие топологии, как двухключевой прямоходовый преобразователь, полумостовой или мостовой преобразователи. Во всех этих топологиях необходимо применять плавающий ключ.

Существуют решения этой задачи с использованием полупроводниковых компонентов, но только для низковольтных применений. Интегральные драйверы верхнего плеча не предоставляют разработчику достаточной гибкости, а также не обеспечивают такого уровня защиты, изоляции, устойчивости к переходным процессам и подавления синфазных помех, который дает хорошо спроектированный и изготовленный трансформатор для управления затвором.

На рис. 4 показан самый примитивный способ получения плавающего управления затвором. Выход микросхемы драйвера подключен через разделительный конденсатор к небольшому трансформатору (обычно тороидальному для лучшей производительности). Вторичная обмотка подключена непосредственно к затвору ПТ, и любые замедляющие резисторы должны располагаться со стороны первичной обмотки трансформатора. Обратите внимание на стабилитроны в затворе для защиты от переходных процессов. На выходе драйвера необходимо использовать ограничительные диоды, ими нельзя пренебрегать, даже если при первых испытаниях не возникли проблемы с реактивными токами в трансформаторе.

В простейшей изолированной схеме для управления затвором используется трансформатор, как показано на рис. 4. Ограничительные диоды необходимы для защиты от реактивных токов, а разделительный конденсатор предотвращает насыщение трансформатора. Конденсатор дает сдвиг уровня выходного напряжения драйвера, который зависит от относительной длительности управляющих импульсов.

Схема, представленная на рис. 4, обеспечивает отрицательное напряжение на вторичной обмотке на интервалах времени, когда ПТ выключен. Это значительно увеличивает устойчивость к синфазным помехам, что особенно важно для мостовых схем.

Однако недостаток отрицательного смещения — это уменьшение положительного напряжения, открывающего ПТ. При небольшой относительной длительности импульсов положительный импульс большой. При относительной длительности, равной 50%, половина имеющегося напряжения драйвера теряется. При большой относительной длительности положительного напряжения может не хватить для полного открывания ПТ.

Схемы с трансформаторной развязкой наиболее эффективны при относительной длительности от 0 до 50%. К счастью, именно это и нужно для прямоходовых, мостовых и полумостовых преобразователей.

Обратите внимание: на рис. 5 показано, как напряжение на разделительном конденсаторе смещается под действием низкочастотных колебаний, наложенных на выходные импульсы драйвера. Эти колебания должны тщательно подавляться для обеспечения безопасной работы. Обычно для борьбы с этим явлением увеличивают емкость конденсатора, что уменьшает Q для низкочастотных составляющих. Необходимо проверить работу схемы при всех возможных переходных процессах, особенно при старте, когда конденсатор разряжен.

Читайте также:  Посудомойка бош не набирает воду

Осторожно: схема восстановления постоянной составляющей!

Иногда разработчик может столкнуться с высоковольтной схемой, в которой требуется изолированное управление затвором при относительной длительности импульсов около 100%. Раньше для таких применений рекомендовали схему, показанную на рис. 6. Но ее применение может приводить к повреждению источника питания при выключении.

Диод и конденсатор на стороне вторичной обмотки восстанавливают постоянную составляющую на затворе и обеспечивают управление затвором при значениях относительной длительности до 90% и более. Однако у этой схемы есть серьезный недостаток, и использовать ее без очень тщательного анализа не рекомендуется.

Эта схема хорошо работает в установившемся режиме (рекомендуется нагрузочный резистор в затворе), но когда контроллер ШИМ выключается, разделительный конденсатор остается подключенным через трансформатор на неопределенный период времени. Это может привести к насыщению трансформатора, как показано на рис. 6б. Когда трансформатор насыщается, вторичная обмотка замыкается накоротко, и конденсатор на стороне вторичной обмотки может включить ПТ. Насыщение можно предотвратить, если использовать сердечник с зазором и конденсатор небольшой емкости, но при этом увеличится реактивный ток, необходимый для управления затвором, а это вызывает другие проблемы.

Изолированное управление затвором для мостовых преобразователей

Мостовые и полумостовые преобразователи — это устройства, в которых требуется очень надежная изолированная схема управления. В то время как один из ключей закрыт, ключ на другой стороне моста будет открыт. В результате на выключенном устройстве будет присутствовать большое синфазное напряжение.

На рис. 7 показана схема, рекомендуемая для полумостового преобразователя. В ней управлять затворами должны два трансформатора. Не пытайтесь использовать только один трансформатор и схему с тремя состояниями, как советуют в некоторых руководствах по применению!

В мостовом преобразователе, показанном на рис. 8, также требуются два трансформатора для управления затворами. Двойные вторичные обмотки в каждом трансформаторе используются для управления парами ПТ в диагонально противоположных плечах моста. Для обоих типов мостов схемы управления затворами должны тщательно тестироваться во время переходного процесса при включении, когда возникают большие пиковые токи, и отрицательные напряжения на затворах невелики.

В схеме моста с фазовым сдвигом (рис. 9) для управления затворами также используются два трансформатора. Но обратите внимание на отличие: каждая сторона моста работает с фиксированной относительной длительностью 50%, что позволяет использовать один трансформатор с двумя вторичными обмотками противоположной полярности. Это одна из немногих схем, где можно применять биполярную схему управления затвором без снижения надежности. Но выбросы, возникающие во время переходных процессов при выключении, не должны приводить к открытию транзисторов. Обратите внимание на полярность вторичных обмоток.

Заключение

Схема управления затвором — критически важная часть проекта преобразователя. Убедитесь в том, что вы используете правильную схему, и не копируйте вслепую схемы из руководства по применению. Трансформаторы в цепях управления затворами придают вашему проекту такую степень надежности, которую невозможно получить при использовании полупроводниковых решений. Если вы разрабатываете очень мощное устройство, то это важнейшая составляющая. Добавление активных элементов для того, чтобы, согласно общепринятому мнению, увеличить скорость переключения, обычно не дает улучшения общей производительности, но вносит новые возможности для потенциальных отказов. Делайте вашу схему управления затвором как можно более простой.

Литература

Другие статьи по данной теме:

Если Вы заметили какие-либо неточности в статье (отсутствующие рисунки, таблицы, недостоверную информацию и т.п.), просьба сообщить нам об этом. Пожалуйста укажите ссылку на страницу и описание проблемы.

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

Читайте также:  Как зарядить степлер канцелярский

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Developing sensorless BLDC controller

В инете полно статей о том как работают MOSFET-ы (ака полевики, т.е. полевые транзисторы), что надо рулить напряжением а не током. Разберем поподробнее + и – разных драйверов.

Теория проводимости

Есть N-канальные и P-канальные полевики, также ввиду особенностей производства, между Source и Drain образуется “паразитный” диод.

Для управления N-канальным полевиком необходимо приложить положительное напряжение относительно Source порядка 10V. В импульсных преобразователях на частотах 50+кГц требуется быстро открыть полевик, чтобы его сопротивление резко уменьшилось до

0 ом. В таком случае потерь тепла будет меньше. Почему? Если заглянуть в любой даташит на полевой транзистор то можно обнаружить что сопротивление перехода Drain-Source меняется в зависимости от напряжения на Gate-Source. Взьмем абстрактный транзистор: если при 5V сопротивление будет составлять 1 ом, то при 10V уже 0.5-0.7Ом, что в

два раза меньше, как следствие потери при более высоком напряжении управления тоже уменьшаются. Всего то! Однако у Gate есть внутренняя емкость. От десятков пикофарад у самых слабых полевиков до нанофарад у таких монстров как APT5016 (хотя это еще не самый злой полевик).

У P-канального наоборот, надо на Gate подать отрицательное напряжение относительно Source чтобы полевик открылся. Ситуация с сопротивлением открытого канала аналогична.

Драйвера

Для того чтобы быстро перезарядить Gate необходимо приложить, в зависимости от полевика, различное усилие. В интернете есть формулы для расчета токов, протекающих через драйвер. Я же хочу показать какие есть схемы управления полевиками. Конкретно нас интересует ключевой режим работы MOSFET-а.

Напрямую от контроллера

Не самый лучший вариант. Исключение составляют контроллеры со встроенным драйвером. RG резистор ограничивает ток через контроллер и уменьшает пульсации. У полевиков тоже есть своя индуктивность, она небольшая, но при быстром нарастании/спаде возникают колебания как в LC контуре. В моих краях найти контроллер со встроенным драйвером либо сложно либо дорого, поэтому приходится колхозить на универсальном ШИМ контроллере, под названием TL494.

Еще одна заметка по поводу резистора RG, когда требуется управлять большими токами и приходится ставить по 2-3+ транзистора, то данный резистор необходимо ставить перед каждым полевиком:

Читайте также:  Принцип работы вакуумной печи

Особо крутые контроллеры, как на материнках, работающие на частотах 0.5-2МГц не требуют данного резистора и имеют отдельный выход для каждого полевика. Каждый полевик там представляет собой отдельную фазу с отдельным дросселем. Такие частоты выбраны специально для уменьшения габаритов всей схемы. Чем выше частота – тем меньше индуктивность нужна. В общих чертах.

Производители контроллеров полевиков рекомендуют сопротивление RG 4.7 Ом. Даже видел гдето видео ролик с презентацией сравнения потерь при различных резисторах. На практике же RG может доходить до 200 Ом, т.к. драйвера разные – токи которые они могут выдержать тоже разные. И частоты тоже разные. Короче глупо говорить что ставьте везде 4.7 Ома и будет счастье. Поэтому данный резистор должен подбираться индивидуально под способности драйвера и емкость Gate полевика (в даташитах этот параметр обозначается как Ciss – Input Capacitance).

Двухтактный биполярный драйвер

Одна из самых эффективных схем управления:

В идеале управляющие транзисторы надо распологать как можно ближе к MOSFET-у, для уменьшения пути протекания тока. Важно добавить шунтирующий конденсатор между VGate и землей (в схеме не указан).

Хорошо если N-канальный полевик Source-ом подключен к общей шине – земле – что и контроллер. Такое бывает в Step-Up конвертерах, однако ими мир не ограничивается. В Step-Down конвертерах полевик подключается Drain-ом напрямую к +, а Source идет дальше на дроссель. Если вы (не дай бог как я, по своей неопытности, когда в первой пришлось собрать понижающий преобразователь) попробуете заставить работать такую схему:

То обнаружите что полевик уже дымиться и припой капает коту на хвост расплавился. Как я сказал в начале статьи, N канальный полевик открывается полностью если на Gate подать + относительно Source. Но в данном случае получается когда мы подаем + на Gate, он начинает открываться и Source поднимается к + тоже! В итоге полевик не открыт и не закрыт. Висит посередине и дико греется. Но тут существует простое решение, Bootstrap-драйвер:

Схема немного усложнилась. Как видите силовым полевиком (справа) управляет по прежднему двухтактный биполярный драйвер. Однако он заведен относительно Source полевика. Левый полевой транзистор – маломощный, используется для сдвига уровня. Сигнал подается инвертированный. Резистор Pull-Down (подтягивающий) лучше поставить, в случае чего чтобы схема не “летала в воздухе”. Вот как оно работает: изначально конденсатор CBOOT заряжается через диод DBOOT управляющим напряжением, т.к. транзистор закрыт, на выводе Source земля (после дросселя L идет нагрузка которая как бы “заземляет” на время выключения полевика вывод Source). Полевик сдвига уровня наоборот (слева), открыт, чтобы силовой полевик был закрыт. Собственно в этом и заключается инверсия. Когда полевик сдвига уровня закрывается через резистор RLEVEL подается положительное напряжение на драйвер, а далее драйвер усиливает сигнал и подает + на Gate силового транзистора. Он начинает открываться и… и открывается полностью! Так как конденсатор CBOOT заряжен и привязан к Source силового полевика, то когда Source выравнялся по напряжению с напряжением притания, то CBOOT поднялся еще выше и оттуда, сверху, рулит через драйвер полевиком! Получается напряжение в момент открытия силового полевика относительно земли таково: UCBOOT+UPOWER. А диод не позволяет этому напряжению уходить обратно. Поэтому важно рассчитать какая разница напряжений у Вас получиться и использовать диод с запасом на данное напряжение. Когда триумф нашего CBOOT подходит к концу левый полевик открывается, на драйвере напряжение падает и одновременно с этим Source силового полевика также возвращается на “землю”. Я бы рекомендовал добавить небольшой резистор после Drain управляющего полевика, чтобы, когда драйвер открыт и “земля” драйвера выше реальной земли, не убить маломощный управляющий полевик. На своей практике я использовал 12 Ом резистор. Такая схема, с КПД 85% управляла понижающим конвертером на 300 ватт…. только недолго, нагрузка на выходе в виде резисторов плавилась на глазах 🙂 Еще большего КПД можно достичь применяя синхронный выпрямитель, это когда вместо диода снизу ставится тоже полевой транзистор и открывается, когда верхний уже закрыт. Т.к. схема синхронизации двух полевиков заметно усложняется, то советую использовать спецальные синхронные драйвера. Там уже все задержки между открытием и закрытием есть, чтобы исключить протекание сквозных токов.

Схема ускоренного выключения на PNP

Самая простая и, возможно, самая популярная схема на одном PNP транзисторе:

В данном случае подразумевается что контроллер достаточно мощный, чтобы быстро зарядить полевик, но например, как у TL494, выход состоит всего лишь из одного npn транзистора. Обьеденив два имеющихся выхода TL494 и подцепив коллектором на + питания, эмитторы идут на вход этого полудрайвера. Главное эммитеры подтянуть на землю резистором. В случае напрямую выход TL494 подключить к полевику, то он будет очень долго закрываться, если подтягивающий резистор на килоом и больше. Если сдеать его на 100-200 ом, то тогда возрастает нагрузка на выходной каскад TL-ки, что тоже не хорошо:

В таком случае и применяется закрывающий драйвер:

В таком случае подтягивающий резистор делается на несколько килоом а RG рассчитывается также как раньше. При подаче положительного импульса, он проходит напрямую через диод D_ON и заряжает Gate полевика. Когда выходной каскад на TL-ке закрывается, то через подтягивающий резистор PULL_DOWN открывается Q_OFF и мгновенно разряжает через себя заряд Gate, что и приводит к моментальному закрытию полевика!

Почему N-канальный полевик лучше P-канального?

Возможно вы уже заметили что на всех схемах фигурирует N-канальный MOSFET. Этому есть несколько причин:

  • У N-канала при одинаковой серии меньшее сопротивление открытого канала.
  • N-канальные дешевле. 20A N-ch 1$ условно, то 20A P-ch 1.5$
  • В парных сборках N-ch и P-ch (в SO8 корпусе например) P-ch обладает как бОльшим сопротивлением так и меньшим максимальным током.
  • Сложно достать мощные P-ch полевики в какойнить деревне 🙂
  • Драйвер на рассыпухе для High-side N-ch может выйти дешевле чем разность стоимости P-ch – N-ch полевиков.

Так что если уже запаслись N-канальными полевиками, то вперед собирать к ним драйвера! Это не сложнее чем купить/найти P-ch.

Ссылка на основную публикацию
Adblock
detector