Штампы и контрштампы, применяющиеся в зуботехнической лаборатории, изготавливаются из специальных сплавов. Они должны обладать следующими свойствами:
– должны быть совместимы по температуре плавления;
– температура плавления должна быть низкой;
– должны быть достаточно твердыми;
– не должны быть хрупкими, не деформироваться при штамповке;
– не должны давать усадки.
В состав легкоплавких сплавов входят олово, свинец, висмут, иногда – кадмий. Заводы поставляют сплав в блоках («таблетках») по 60 г каждый. В коробку уложено 10 блоков.
Чаще всего употребляются сплавы следующих составов (в частях):
На каждую изготовленную методом штамповки коронку с зубного техника списывается 0,6 г легкоплавкого сплава, следовательно, на 100 зафиксированных в полости рта у пациента штампованных коронок списывается 60 г, т.е. один блок («таблетка»).
Сплавы на основе меди. Состав, свойства, применение.
Эти сплавы имеют вспомогательное значение. К ним относятся:
дюралюминий, нейзильбер, латунь алюминиевая бронза.
Дюралюминий (твердый алюминий) – сплав, состоящий из алюминия, магния, марганца и меди. Сплав серовато-белого цвета. Плотность – 2,8,температура плавления – 605˚, твердость по Бринеллю – 120. Из сплава делают малые и большие кюветы.
Нейзильбер (мельхиор) – серый, блестящий сплав. Состоит из меди, цинка, никеля. Плотность – 7,5, температура плавлении – 1024˚, твердость – 80 В полости рта покрывается защитной матовой пленкой. До внедрения в ортопедическую практику стали применяется как основной материал для изготовления искусственных коронок и зубов. Можно применять дл временныхаппаратов и в виде проволок.
Латунь – соломенно-желтого цвета. Состоит из меди и цинка. Плотность – 8,4, температура плавления – 1050˚, твердость-60. В полированном виде некоторое время похоже на золото, но быстро окисляется. Хорошо растворяется в азотной кислоте. Из латуни готовят ортодонтические винты (замки), кюветы. Входит в состав золотых и серебряных припоев.
Алюминиевая бронза – сплав соломенно-желтого цвета с красноватым оттенком. Состоит из меди и алюминия. Плотность – 8,3, температура плавления 1030˚, твердость -50. В полости рта окисляется. Хорошо поддается волочению, из нее можно изготовить проволоку любой толщины. В стоматологии используется в виде лигатурной проволоки для фиксации к естественным зубам внутри ротовых шин, применяемых при лечении переломов челюстей.
Сплавы титана
Титан – серебристый металл, не темнеющий со временем ни в атмосфере, ни в морской воде; на него не действуют кислоты и щелочи. Коррозийная стойкость титана превышает таковую у нержавеющей стали. При удельной массе, почти такой же, как у алюминия, титан в 12 раз прочнее его и превосходит по прочности железо. В отличие от последнего титан не намагничивается, а такое свойство, как термостойкость (температура плавления – 1670 ˚) резко выделяет его среди других металлов. Стали с присадками титана обладают повышенной жаропрочностью и используются в космической технике и других технологиях. Соединения титана используется в качестве катализаторов в полимеризации мономеров, красителей, наполнителей высокомолекулярных соединений.
В настоящее время сплавы титана используются для получения цельнолитых каркасов зубных протезов, а также мостовидных протезов с последующей обработкой и нанесением покрытий нитрида титана. Это производится нагреванием в атмосфере азота или аммиака. Покрытие нитридом титана увеличивает твердость и придает эстетический вид, пленка имеет золотистый оттенок , (температура плавления – 2950˚, твердость – 7-8 ед. Для сравнения: твердость алмаза -10 ед. топаза-8ед.).
Наибольший интерес представляет применение сплавов титана для получения цельнолитых каркасов зубных протезов. Из всех сплавов наилучшими литейными свойствами наряду с высокими показателями прочности (предел прочности на разрыв 686 МПа) обладает сплав марки ВТ5Л (титан, легированный алюминием). Линейная и объемная усадка при литье у сплава ВТ5Л составляют 0,8-1%, что близко к таковым для золотых сплавов.
Технология получения ортопедических конструкций из литьевого титана, следующая: к смоделированной по обычной методике восковой модели протеза прикрепляются литниковая система из штифтов диаметром 5-6 мм и устанавливают центральный питатель. Модели с питателем присоединяются к коллекторам блока литниковой системы. Для изготовления керамической формы используется электрокорунд. Общее количество слоев покрытия -9. Каждый слой подвергается сушке в атмосфере аммиака. Затем блок моделей помещают в ванну для выталкивания воска. Формы для литья прокаливают при температуре 1000˚ С и обрабатывается пироуглеродом (подаваемый в печь углеводород при высокой температуре в отсутствии кислорода разлагается и атомарный углерод пропитывает стенки керамической формы, предотвращая ее химическое взаимодействие с металлом). Формы, остывшие до температуры не более 150˚, устанавливают в контейнер под заливку.
Плавку и литье титана проводят в вакуумно-дуговой гарнисажной литьевой установке. Плавку ведут в графитовом тигле с гарнисажем. Благодаря постоянному охлаждению тигля (водой) гарнисаж не расплавляется, защищает тигель от воздействия, расплавленного металла.
После наплавления необходимого количества металла включается центробежная установка, и расплавленный металл сливается в центральный метала
приемник контейнера с формами. Охлаждение металла проводится в вакууме или в среде аргона.
Обработка изделий из титана может быть осуществлена посредством:
1)механической шлифовки и полировки ( по обычной методике);
Состав электролита: серная кислота -60%; плавиковая кислота -30%; глицерин -10%. Деталь является анодом. Катод выполняет из графита. Плотность тока составляет 0,5-0,7 А/мм. Напряжение 24В.
Выдерживание изделий из титана в атмосфере азота при температуре 850-950˚ приводит к образованию на их поверхности золотистой пленки нитрида титана.
Напишем:
✔ Реферат от 200 руб.
✔ Контрольную от 200 руб.
✔ Курсовую от 500 руб.
✔ Решим задачу от 20 руб.
✔ Дипломную работу от 3000 руб.
✔ Другие виды работ по договоренности.
Сплавы
металлическими свойствами и состоящие из двух или более
элементов, из которых хотя бы один является металлом. Их
получают охлаждением расплавленных смесей, совместным осаждением из газовой фазы, электроосаждением из растворов и расплавов, диффузионным насыщением. Свойства сплавов значительно отличаются от свойств металлов (см. табл. 9). Например, прочность на разрыв сплава меди и цинка (латуни) в три раза выше, чем у меди и в шесть раз по сравнению с цинком. Железо хорошо растворимо, а его сплав с хромом и никелем (нержавеюща сталь) – устойчив в разбавленной серной кислоте.
и алюминием (LaAl4), лантаном и никелем (LaNi5), кальцием
и цинком (CaZn10) и многими другими.
Fe + C (до 1,7 %) + легирующие добавки (Cr, Ni, Mo, W, Al, Mn) + металлургические примеси (Si, S, P)
Переработка чугуна мартеновским и электротермическим способами, основанными на выжигании (окислении) углерода. Мартеновским способом получают 15 % стали, электротермическим – стали, содержащие W, Mo и др.
Обладают большей твердостью по сравнению с чистым железом и имеют в своем составе до 10 различных элементов
Основной материал, применяемый в машиностроении, строительстве и во многих отраслях техники и науки
Выплавка в доменных печах (93 % Fe + 4,5 % C + 0,5 – 2 % Si, 1 – 3 % Mn, 0,02 – 2 % P и до 0,08 % S)
Очень тверд и хрупок по сравнению с чистым железом
Массивные детали различных машин и сырье для получения стали
Бронза оловянистая, свинцовая, кремниевая
Сплавлением в специальных печах
Обладает высокой стойкостью к атмосферной коррозии
Части машин и художественные отливки
Сплавлением в специальных печах
Обладает высокой пластичностью и стойкостью к атмосферной коррозии
Приборы, детали машин, предметы домашнего обихода, находит применение в моторостроении
По прочности равен стали, но в 3 раза легче ее
При плавлении металлы обычно смешиваются, образуя сплавы.
Ещё в глубокой древности люди заметили, что в большинстве случаев сплавы обладают другими, нередко более полезными для человека свойствами, чем составляющие их чистые металлы. Как вы уже знаете, у бронзы, например, прочность выше, чем у составляющих её меди и олова. Сталь и чугун прочнее технически чистого железа. Поэтому в чистом виде металлы используют редко. Значительно чаще применяют их сплавы. Известно немногим более 80 металлов, но из них получены десятки тысяч различных сплавов.
Помимо большей прочности многие сплавы обладают большей коррозионной стойкостью и твёрдостью, лучшими литейными свойствами, чем чистые металлы. Так, чистая медь очень плохо поддаётся литью, из неё трудно получить отливки, и в то же время оловянная бронза — сплав меди и олова — имеет прекрасные литейные свойства: из неё отливают художественные изделия, требующие тонкой проработки деталей. Чугун — сплав железа с углеродом — также великолепный литейный материал. Чистый алюминий — очень мягкий металл, сравнительно непрочный на разрыв. Но сплав, состоящий из алюминия, магния, марганца, меди и никеля, называемый дюралюминием, в четыре раза прочнее алюминия на разрыв.
Помимо более высоких механических качеств сплавам присущи свойства, которых нет у чистых металлов. Примерами могут служить получаемая на основе железа нержавеющая сталь — материал с высокой коррозионной стойкостью даже в агрессивных средах и с высокой жаропрочностью, магнитные материалы, сплавы с высоким электрическим сопротивлением, с малым коэффициентом термического расширения.
Сплавы — это материалы с металлической кристаллической решеткой, обладающие характерными свойствами и состоящие из двух и более компонентов. |
Компонентами сплавов могут быть и неметаллы, и соединения.
По состоянию компонентов сплавы могут быть однородными, когда при сплавлении образуется как бы раствор одного металла в другом, например сплавы меди и олова, золота и серебра, и неоднородными, например чугун, представляющий собой механическую смесь железа и углерода.
Сплавы классифицируют по-разному, в зависимости от того, какой признак взят за основу. Чаще всего сплавы подразделяют по составу. Например, выделяют медные, алюминиевые, никелевые, титановые и другие сплавы.
Есть группы сплавов, носящие общие названия: бронзы, латуни и др. Иногда в названии сплава отмечают особо ценные компоненты: бериллиевые бронзы, вольфрамовая сталь и др.
В металлургии железо и все его сплавы выделяют в одну группу под названием чёрные металлы, остальные металлы и их сплавы имеют техническое название цветные металлы.
Подавляющее большинство железных (или чёрных) сплавов содержит углерод. Их разделяют на чугуны и стали.
Чугун — сплав на основе железа, содержащий от 2 до 4,5% углерода, а также марганец, кремний, фосфор и серу. Чугун значительно твёрже железа, обычно он очень хрупкий, не куётся, а при ударе разбивается. Этот сплав применяют для изготовления различных массивных деталей методом литья, так называемый литейный чугун, и для переработки в сталь — передельный чугун.
В зависимости от состояния углерода в сплаве различают серый и белый чугун (табл. 4).
Таблица 4
Виды и свойства чугуна
Состав
Свойства
Применение
Серый чугун
Содержит 1,7—4,3% С, 1,25—4,0% Si и до 1,5% Мп. Из-за большого содержания кремния снижается растворимость углерода, поэтому углерод находится в свободном состоянии в виде графита
Сравнительно мягкий и поддающийся механической обработке материал. Свободный углерод придаёт чугуну мягкость
Производство литых деталей (шестерни, колёса, трубы и т. д.), художественное литьё
Белый чугун
Содержит 1,7—4,3% С, более 4% Мп, но очень мало кремния. Углерод в основном содержится в виде цементита — карбида железа Fe 3 C
Твёрдый и хрупкий материал. Эти свойства придаёт цементит, который обладает большой твёрдостью
Переработка в сталь
Сталь — сплав на основе железа, содержащий менее 2% углерода. По химическому составу стали разделяют на два основных вида: углеродистая и легированная.
Углеродистая сталь представляет собой сплав железа главным образом с углеродом, но, в отличие от чугуна, содержание в ней углерода, а также марганца, кремния, фосфора и серы гораздо меньше. В зависимости от количества углерода стали подразделяют на мягкие (содержание углерода не превышает 0,3%), средней твёрдости (углерода несколько больше, чем в мягких) и твёрдые (углерода может быть до 2%). Из стали мягкой и средней твёрдости делают детали машин, трубы, болты, гвозди, скрепки и т. д., а из твёрдой — различные инструменты и посуду.
Легированная сталь — это тоже сплав железа с углеродом, только в него введены специальные, легирующие добавки: хром, никель, вольфрам, молибден, ванадий и др.
Легирующие добавки придают сплаву особые качества. Так, хромоникелевые стали очень пластичные, прочные, жаростойкие, кислотоупорные, устойчивые против коррозии (ржавления). Их применяют в строительстве (например, облицовка колонн станции «Маяковская» московского метро выполнена из хромоникелевой стали (рис. 32)), а также для изготовления нержавеющих предметов домашнего обихода (ножей, вилок, ложек), всевозможных медицинских и других инструментов.
Рис. 32.
Станция метро «Маяковская», облицовка колонн которой выполнена из хромоникелевой стали
Хромомолибденовые и хромованадиевые стали очень твёрдые, прочные и жаростойкие. Их используют для изготовления трубопроводов, компрессоров, двигателей и многих других деталей машин современной техники. Хромовольфрамовые стали сохраняют большую твёрдость при очень высоких температурах. Они служат конструкционным материалом для быстрорежущих инструментов.
Свойства некоторых легированных сталей и области их применения представлены в таблице 5.
Таблица 5
Свойства некоторых легированных сталей и их применение
Легирующий элемент
Особые свойства стали
Изделия, для производства которых используется сталь
Твёрдость и коррозионная стойкость
Инструменты, резцы, зубила
Никель
Вязкость, механическая прочность, коррозионная стойкость
Турбины электростанций и реактивных двигателей, измерительные приборы, детали, работающие при высоких температурах
Марганец
Твёрдость, механическая прочность, устойчивость к ударам и трению
Детали дробильных установок, железнодорожные рельсы, зубья ковшей экскаваторов
Титан
Жаростойкость, механическая прочность при высоких температурах, коррозионная стойкость
В самолёто-, ракето- и судостроении. Химическая аппаратура
Вольфрам
Твёрдость и жаропрочность, износоустойчивость
Быстрорежущие инструменты, пилы, фрезы, штампы, нити электрических ламп
Молибден
Эластичность, жаростойкость, коррозионная стойкость
Лопасти турбин реактивных самолётов и автомобилей, броневые плиты, лабораторная посуда, детали электронных ламп
Кремний
Устойчивость к воздействию кислот
Трансформаторы, кислотоупорные аппараты и приборы
Ванадий
Высокая прочность, упругость и устойчивость к ударам
Детали автомобилей, тракторов и других машин, подвергающиеся при работе ударам
Стали — это основа современного машиностроения, оборонной промышленности, ракетостроения и других отраслей промышленности.
В развитии современной металлургии стали большое значение имели работы Д. К. Чернова и П. П. Аносова.
Из цветных сплавов отметим бронзу, латунь, мельхиор, дюралюминий.
Бронза — сплав на основе меди с добавлением (до 20%) олова. Бронза хорошо отливается, поэтому её используют в машиностроении для изготовления подшипников, поршневых колец, клапанов, арматуры и т. д. Используют бронзу также и для художественного литья (рис. 33).
Латунь — медный сплав, содержащий от 10 до 50% цинка. Применяют в моторостроении, для изготовления мебельной фурнитуры.
Мельхиор — сплав, содержащий около 80% меди и 20% никеля, похож по внешнему виду на серебро. Используют его для изготовления сравнительно недорогих столовых приборов и художественных изделий.
Дюралюминий (дюраль, дуралюмин) — сплав на основе алюминия, содержащий медь, магний, марганец и никель. Имеет хорошие механические свойства, его применяют в самолётo- и машиностроении (рис. 34).