Схема выпрямителя на двух диодах

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор – смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Читайте также:  Оборудование для окраски изделий

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой "Полупроводниковые выпрямители".

Выпрямители. Как и почему.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас – подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете – тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор – на схеме обозначается похожим как на рисунке,

Выпрямитель – его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) – простой диод.
б) – диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) – тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl – сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее – пара-тройка постулатов.
– Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
– Под нагрузкой напряжение немного проседает, а насколько – зависит от конструкции трансформатора, его мощности и емкости конденсатора.
– Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground – земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее – общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой – минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения – если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так – если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто – двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих – наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух – всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

Читайте также:  Характеристика компьютерной мыши чувствительность определяет

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход – если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания – они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам – 0,5А, то нам и нужны два блока питания – +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три – тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе – число "тактов" выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф – емкость конденсатора фильтра, мкФ
Ро – выходная мощность, Вт
U – выходное выпрямленное напряжение, В
f – частота переменного напряжения, Гц
dU – размах пульсаций, В

Для справки – допустимые пульсации:
Микрофонные усилители – 0,001. 0,01%
Цифровая техника – пульсации 0,1. 1%
Усилители мощности – пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

Блок питания – важнейшая часть усилителя. Усилитель работает так: он передает энергию из источника питания в нагрузку. Если источник питания работает плохо, то никакой усилитель не поможет получить в нагрузке то, что нужно. Для питания усилителей широко используется двуполярный источник, выдающий относительно «земли» два одинаковых напряжения разной полярности. Чтобы получить такой источник питания, нужен трансформатор с двумя вторичными обмотками (или с одной, имеющей вывод от середины), соответствующий выпрямитель и фильтр из двух конденсаторов. Можно конденсаторов и больше, но два – это минимум. Но вот как быть с выпрямителем? На самом деле возможны две схемы выпрямителей. Одна содержит два диодных моста, вторая – только один (рис. 1).


Рис.1. Два варианта схем двуполярных выпрямителей.

Существует мнение, активно поддерживаемое на аудиофильских интернет-форумах, что левая схема, которая содержит два моста, гораздо лучше схемы с одним мостом. Но вот почему? Те объяснения, которые приводятся, весьма скудны, невнятны и противоречивы. После длительных расспросов мне все же удалось выяснить причину. Она такова (в моем пересказе): в каждом усилителе живет Дух Аудио, и диодный мост – своего рода жертва, дань этому духу. Если моста два, то дань Духу Аудио в два раза больше. За это Дух отблагодарит вас, улучшив звучание. Если вам показалось, что я издеваюсь – таки да, но совсем немного. Просто все объяснения почему-то именно к этому и сводились. Попытки же научного объяснения были настолько жалкими, что я их так и не смог понять. Если кто-то может объяснить с точки зрения науки и техники, почему два моста лучше одного – я с удовольствием послушаю. И подискутирую. А пока я представлю вам свое вИдение этой проблемы. Научное и техническое.

Звучание устройства определяется тем, как работает это устройство и все его составляющие компоненты. Причем не только в общем и целом, но и в деталях. Поэтому если мы добъемся от источника питания наилучшей работы и в целом, и в мелочах, то значит сделаем все для обеспечения хорошего звука усилителя. И все улучшения звука (конечно, если это вам не показалось, что стало звучать лучше, самовнушение – очень коварная штука) происходят от улучшения технических характеристик (то есть работы) узлов аппаратуры, а не по непонятному правилу типа "так надо для хорошего звука".

Итак, в чем разница между схемами.

1. Два моста больше по габаритам, имеют двойной нагрев (это я докажу ниже), и вдвое дороже. То есть, по этому признаку два моста хуже одного.

2. Для одного моста можно использовать любой трансформатор – как с раздельными обмотками, так и с выводом от средней точки. А для двух мостов только трансформатор с двумя отдельными обмотками. То есть, для выпрямителя с двумя мостами подойдет не всякий трансформатор. Схема менее универсальна, запишем ей минус.

3. В схеме с двумя мостами каждая обмотка трансформатора работает на свой выпрямитель, который в свою очередь работает на свое плечо питания усилителя. Т.е. одно плечо усилителя питается от одной вторичной обмотки трансформатора, другое – от другой. В схеме с одним мостом каждое плечо усилителя питается от каждой из вторичных обмоток трансформатора по очереди. Это мы увидим наглядно. Тогда и решим, что лучше. А пока пусть это побудет загадкой.

4. Рассмотрим, как протекают токи через выпрямители. На рис. 2 показано протекание тока через выпрямитель с двумя мостами. На рис. 3 – протекание тока через выпрямитель с одним мостом.


Рис. 2 Протекание тока через выпрямитель с двумя мостами.


Рис. 3. Протекание тока через выпрямитель с одним мостом.

Обратите внимание, что в выпрямителе с двумя мостами, ток каждого плеча всегда протекает последовательно через два диода. А в выпрямителе с одним мостом – только через один диод. Следовательно, падение напряжения на диодах выпрямителя в схеме с двумя мостами в два раза выше. И до усилителя доходит напряжения немного меньше. Вы можете сказать: «Подумаешь, какая мелочь!» Не так, чтобы и мелочь – именно из этого напряжения получается напряжение на выходе усилителя. Раз напряжение питания уменьшилось, то и на нагрузке максимально возможное напряжение тоже уменьшится. Значит, уменьшится и максимальная выходная мощность. Насколько? А давайте рассмотрим насколько.

Читайте также:  Компрессор для краскопульта своими руками

Для большей наглядности рассмотрим пример. Допустим, трансформатор выдает в каждой из обмоток под нагрузкой 30 вольт. Прямое падение напряжения на диоде 1,2 вольта. Почему такое большое? Потому, что падение напряжения на np-переходе при большом токе складывается с падением напряжения на внутреннем сопротивлении диода. Такое прямое напряжение падает практически на любом кремниевом диоде при прямом токе 3 ампера и больше. Это соответствует току усилителя, равному 1 ампер – ведь ток через усилитель непрерывен, а ток через диод протекает короткими импульсами большой амплитуды. Допустим, минимальное остаточное напряжение на выходных транзисторах составляет 4 вольта. Сопротивление нагрузки 4 ома.

Считаем для амплитудных значений напряжения.

Два моста.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Множитель 2 в знаменателе последней формулы учитывает, что мы пользуемся амплитудными значениями напряжения, а не действующими.

Один мост.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Разница в целых 7 Вт, или в 10%. И как раз этих семи ватт максимальной выходной мощности вам может не хватить, и начнется клиппинг!

Покупая и ставя в схему два моста, вы должны будете заплатить дороже за то, чтобы получить выходную мощность на 7 Вт ниже!

5. Говорят, что схема с двумя мостами менее подвержена подмагничиванию трансформатора постоянным током при воспроизведении усилителем сигнала частотой 25 Гц. Это не так. Подмагничивание происходит при потреблении от вторичной обмотки вообще тока с частотой 25 Гц. Т.е. две вторичные обмотки в этом случае работают как одна, независимо от схемы выпрямителя. Главное, что они транслируют свой ток в первичную обмотку, в которй все и происходит.

Так что у нас целых четыре причины, почему выпрямитель с одним мостом лучше, чем с двумя. И ни одной, показывающей преимущества выпрямителя с двумя мостами.

Ах да! Я же не доказал, что два моста греются вдвое больше, чем один. Посмотрите на рисунки 2 и 3. Ток усилителя проходит через два диода в каждом из мостов. А токи обоих плеч усилителя в среднем одинаковы (за довольно длительное время, определяющее нагрев – секунды и десятки секунд). В одном случае ток проходит через один мост, а в другом точно такой же ток проходит через два моста. Нагрев вызывается током. Два моста – в два раза больший нагрев, каждый мост греется одинаково, что в схеме с одним мостом, что в схеме с двумя. Поэтому два моста дают вдвое больше тепла, чем один.

Теперь вернемся к загадке в пункте 3. Есть ли разница в том, если каждое плечо усилителя от своей собственной обмотки трансформатора, или если каждая из вторичных обмоток работает на оба плеча усилителя поочередно. Тут такое дело… Вторичные обмотки трансформатора не всегда одинаковы. Даже если их числа витков равны. У броневого и тороидального трансформатора обмотки наматываются одна поверх другой. У той, что сверху средний диаметр витка больше, чем у той, что снизу. Отсюда разные сопротивления и разные потери напряжения при протекании тока. И разные поля рассеяния (значит, их напряжения на холостом ходу могут отличаться). Вот у меня на столе лежит высококачественный тороидальный трансформатор 2х28 вольт 75 ВА. Сопротивления его вторичных обмоток 0,7 Ом и 0,75 Ом. На самом деле это мелочи, и реальная разность напряжений на обмотках очень небольшая. Но она бывает. В этом моем трансформаторе 28,6 вольт и 28,65 вольт под нагрузкой. Если напряжения вторичных обмоток не различаются – то все отлично. А если различие все же есть? А оно вполне возможно. Тогда напряжения питания, поступающие на каждое из плеч усилителя, будут выглядеть так, как на рисунке 4.


Рис. 4. Напряжения на выходе выпрямителя при разных значениях напряжений вторичных обмоток трансформатора.

Если выпрямительных моста два, то каждое плечо выпрямителя (и усилителя) питается от своей обмотки. Своим напряжением. И в одном плече напряжение получается больше, в другом меньше. Максимальная выходная мощность будет определяться наименьшим напряжением! Допустим, напряжение положительного плеча в нашем примере меньше, чем отрицательного на 0,2 вольт. Итак, напряжение, создаваемое одной из обмоток не 30 вольт, а 29,8 вольт. Считаем.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Потеряли целый ватт. Мелочь, конечно. Но ведь жалко! А если разница напряжений будет больше? Мало ли какой трансформатор вам удалось приобрести! А в самодельном трансформаторе все может быть еще хуже.

Для одного моста картина совершенно другая. Там на каждое плечо нагрузки работает каждая из обмоток поочередно. Максимальное напряжение в каждом плече получается равно наибольшему из напряжений обмоток. Это же здорово – получить все по максимуму! Явное преимущество перед схемой с двумя мостами. Расплатой за это будет наличие в выпрямленном напряжении пульсаций с частотой 50 Гц, тогда как двухмостовой выпрямитель дает пульсации только с частотой 100 Гц. Пульсации с частотой 50 Гц фильтруются хуже. Есть ли в этом недостаток? Нет! У нас целых две причины не бояться этих более низкочастотных пульсаций:

1. Амплитуда этих пульсаций очень мала и равна разности напряжений вторичных обмоток. В нашем примере это 0,2 вольта.

2. В фильтрах современных усилителей используются конденсаторы большой емкости, которые эффективно все сглаживают. 50-ти герцовые пульсации сглаживаются в 2 раза хуже, чем «стандартные» частотой 100 Гц. Но амплитуда стогерцовых пульсаций составляет десятки вольт (она равна напряжению питания). И все равно эффективно подавляется. А тут доли вольта.

Итак, по всем параметрам выпрямитель с одним мостом превосходит двухмостовую схему. И если не верить в Духа Аудио, то использовать надо именно его. Давайте я для большей наглядности сведу в таблицу результаты нашего примера.

С одним мостом С двумя мостами Максимальная выходная мощность, Вт

И сколько надо дополнительно потратить денег и места, чтобы вместо выходной мощности 76 Вт получить мощность 68 Вт?

Но это еще не все. Вот теперь давайте вспомним, что на свете существуют диоды Шоттки. О том, что их повышенное быстродействие при выпрямлении синусоиды частотой 50 Гц никак не проявляется, я уже писал. Но у них есть другое очень замечательное свойство: гораздо меньшее прямое падение напряжения. Я замерил его для диодов нескольких типов, оно оказалось практически одинаковым и равным 0,7 вольт. То есть по сравнению с диодами с np-переходом мы выигрываем целых полвольта. Много ли это? Я повторю все расчеты для нашего примера, используя в качестве диодов диоды Шоттки, и снова сведу все в таблицу.

Ссылка на основную публикацию