Регулятор мощности на тиристоре для паяльника

Наверняка, среди начинающих заниматься электроникой, есть обладатели паяльников средней и большой мощности. В данном случае, я подразумеваю, разумеется, мощность паяльника для пайки электроники. Причем иногда это бывают не дедушкины монстры, с жалом толщиной с мизинец, а вполне аккуратные ЭПСН 40 Ватт. Такими паяльниками, если заточить жало под острый конус, вполне удобно паять транзисторы, резисторы и прочие выводные детали, а при необходимости, даже можно выполнить разовые работы по пайке SMD деталей. Если бы не одно но. У таких паяльников, даже если мощность их равна всего сорока ваттам, температура жала довольно высока, и при пайке, велика вероятность перегреть полупроводниковые детали.

Покупать новый паяльник мощностью 25 ватт в этом случае нет необходимости, достаточно собрать регулятор мощности на тиристоре или симисторе. У меня есть, для личного пользования, регулятор мощности на тиристоре КУ201Л. Схема работает безотказно много лет, и позволяет регулировать мощность от половины до максимума. Сегодня ко мне обратился знакомый, заинтересовавшийся радиоделом, и имеющий как раз такой паяльник. Решено было помочь человеку, и чтобы желание заниматься электроникой, не пропало из-за финансовых преград, я согласился собрать регулятор мощности. Были куплены необходимые детали, обошедшиеся всего приблизительно в 70 рублей, и приступил к сборке. Сама сборка настолько элементарна, что спаять этот регулятор сможет любой человек, умеющий отличить симистор от резистора. Собрал все навесным монтажем, соединив детали на скрутку, с последующим пропаиванием соединений.
Ниже приведена схема регулятора:

Существуют подобные схемы, как на тиристорах, так и на симисторах. Остановился на этой схеме потому, что в ней, в отличии от той, которую собирал ранее, мощность регулируется до нуля, а не до половины. Знакомый также высказал пожелание, чтобы устройство при необходимости можно было использовать и для регулировки яркости свечения ламп накаливания. Ниже приведен список деталей необходимых для сборки:

Разберем их подробнее:

В первую очередь нам нужен симистор, способный регулировать мощность до 300 Ватт, чтобы был запас по мощности, и рабочее напряжение 400 вольт и выше. Цоколевку симистора можно видеть на рисунке ниже:

Для начинающих, не сталкивавшихся ранее с симисторами, приведу его эквивалентную схему:

Иначе говоря, здесь мы видим 2 встречно — параллельно установленных тиристора, с общим управляющим электродом. Симистор нужно прикрепить на радиатор, нанеся термопасту. Обычно пользуюсь отечественной КПТ–8.

Такой площади радиатора, будет достаточно для долговременной работы симистора, даже при значительной мощности нагрузки, не беспокоясь о его перегреве.

При работе устройства светится светодиод. Подойдет любой на напряжение 2.5 — 3 вольта. Движком переменного резистора, мы регулируем мощность от нуля до максимума. Верхний по схеме вывод переменного резистора, это будет крайний левый вывод резистора, если повернуть его лицевой стороной к себе. Левый и средний выводы переменного резистора, нужно соединить перемычкой. Переменный резистор подойдет сопротивлением 470 — 500 КилоОм, с линейной зависимостью. Напомню, для отечественных резисторов, должна быть в маркировке буква А, для импортных буква Б (английская В).

Диод для схемы нужен рассчитанный на обратное напряжение 400 — 1000 вольт, 1 ампер. Конденсатор керамический, рассчитанный на работу при напряжении до 50 вольт. Также в схеме применен Динистор DB3. Резистор нужен типа МЛТ, или аналогичный импортный, на мощность 0.25 Ватт.

Динистор не имеет полярности. Иногда динистор также называют четырехслойным диодом. Ниже приведена его эквивалентная схема:

Вся сборка регулятора заняла у меня меньше часа. Были нарезаны кусочки монтажного провода, выводы деталей были удлинены, скручены и надежно пропаяны. Устройство, выполненное навесным монтажем, в ходе эксплуатации не менее надежно и долговечно, чем выполненное на печатной плате, если сам монтаж проведен на совесть. В таком виде устройство было после пайки:

Все оголенные выводы деталей были заизолированы изолентой и скотчем, в несколько слоев. Оформление в корпус оставил заказчику, потому что на вкус и цвет, как говориться. Осталось самое элементарное подключить розетку, шнур с вилкой и устройством можно будет пользоваться. Для проверки регулятора, подал на него 220 вольт на вход, соединив проводом с вилкой, и с крокодилами на другом конце. К выходу регулятора, также была подключена с помощью крокодилов, лампа 200 ватт. Регулировка была плавной и меня вполне устроила. За пять минут работы тиристор не успел нагреться, что говорит о том, что примененного мной радиатора, для работы совместно с паяльником будет более чем достаточно. Автор AKV.

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Читайте также:  Работа ручным лобзиком для начинающих

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Читайте также:  Как правильно сделать заземление дома видео

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.

Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.

Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорным регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Читайте также:  Диаметр отв под резьбу

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Многие паяльники продаются без регулятора мощности. При включении в сеть температура повышается до максимальной и остаётся в таком состоянии. Для её регулировки нужно отключать прибор от источника питания. У таких паяльников флюс моментально испаряется, образуются окислы и жало находится в постоянно загрязнённом состоянии. Его приходится часто чистить. Для припаивания больших компонентов нужна высокая температура, а маленькие детали можно сжечь. Во избежание таких проблем делают регуляторы мощности.

Как сделать надёжный регулятор мощности для паяльника своими руками

Регуляторы мощности помогают управлять степенью нагрева паяльника.

Подключение готового регулятора мощности нагрева

Если у вас нет возможности или желания возиться с изготовлением платы и электронными компонентами, то можете купить готовый регулятор мощности в магазине радиотоваров или заказать в интернете. Регулятор ещё называют диммером. В зависимости от мощности, устройство стоит 100–200 рублей. Возможно, после покупки вам придётся немного доработать его. Диммеры до 1000 Вт обычно продаются без радиатора охлаждения.

Регулятор мощности без радиатора

Регулятор мощности без радиатора

А устройства от 1000 до 2000 Вт с маленьким радиатором.

Регулятор мощности с маленьким радиатором

Регулятор мощности с маленьким радиатором

И только более мощные продаются с большими радиаторами. Но на самом деле, диммер от 500 Вт должен иметь небольшой радиатор охлаждения, а от 1500 Вт уже устанавливают крупные алюминиевые пластины.

Китайский регулятор мощности с большим радиатором

Регулятор мощности с большим радиатором

Учтите это при подключении прибора. Если необходимо, установите мощный радиатор охлаждения.

Доработанный регулятор мощности

Доработанный регулятор мощности

Для правильного подключения устройства к цепи посмотрите на обратную сторону печатной платы. Там указаны клеммы входа IN и выхода OUT. Вход подключается к сетевой розетке, а выход к паяльнику.

Обозначение клемм входа и выхода на плате

Обозначение клемм входа и выхода на плате

Монтаж регулятора производится разными способами. Для их осуществления не нужны специальные знания, а из инструментов вам понадобятся только нож, дрель и отвёртка. Например, можно включить диммер в шнур питания паяльника. Это самый лёгкий вариант.

  1. Разрежьте кабель паяльника на две части.
  2. Подключите оба провода к клеммам платы. Отрезок с вилкой прикрутите ко входу.
  3. Подберите подходящий по размеру пластиковый корпус, проделайте в нём два отверстия и установите туда регулятор.

Ещё один простой способ: можно установить регулятор и розетку на деревянную подставку.

  1. Прикрутите к деревянной дощечке плату и розетку с коротким проводом.
  2. Возьмите вилку с двухжильным шнуром и подключите её ко входу платы.
  3. Розетку подключите к выходу.

Диммер на деревянной подставке

К такому регулятору можно подключать не только паяльник. Теперь рассмотрим более сложный, но компактный вариант.

    Возьмите большую вилку от ненужного блока питания.

Вилка от блока питания

Регулятор в корпусе

Это устройство, как и предыдущее, позволяет подключать разные приборы.

Самодельный двухступенчатый регулятор температуры

Самый простой регулятор мощности — двухступенчатый. Он позволяет переключаться между двумя значениями: максимальным и половиной от максимального.

Двухступенчатый регулятор мощности

Двухступенчатый регулятор мощности

Когда цепь в разомкнутом состоянии, ток протекает через диод VD1. Выходное напряжение 110 В. При замыкании цепи выключателем S1 ток обходит диод, так как он подключён параллельно и на выходе получается напряжение 220 В. Диод подбирайте в соответствии с мощностью вашего паяльника. Выходная мощность регулятора рассчитывается по формуле: P = I * 220, где I — ток диода. Например, для диода с током 0,3 А мощность считается так: 0,3 * 220 = 66 Вт.

Так как наш блок состоит всего из двух элементов, то его можно разместить в корпусе паяльника с помощью навесного монтажа.

  1. Припаяйте параллельно детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов.
  2. Соедините с цепью.
  3. Залейте всё эпоксидной смолой, которая служит изолятором и защитой от смещений.
  4. В рукояти сделайте отверстие под кнопку.

Если корпус очень мал, то воспользуйтесь переключателем для светильника. Вмонтируйте его в шнур паяльника и вставьте параллельно выключателю диод.

Переключатель для светильника

Переключатель для светильника

На симисторе (с индикатором)

Рассмотрим простую схему регулятора на симисторе и изготовим печатную плату для него.

Регулятор мощности на симисторе

Регулятор мощности на симисторе

Изготовление печатной платы

Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.

  1. Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте.
  2. Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом.

Нарисованная маркером схема

Плата после травления

Плата после лужения дорожекОткусите четыре штырька и впаяйте их в плату

Для нанесения схемы на текстолит можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.

Монтаж

Подготовьте все необходимые компоненты для монтажа:

Ссылка на основную публикацию