Понижающий трансформатор на схеме

В 1831 году английский физик Майкл Фарадей обнаружил событие электромагнитной индукции. Оно и легло в основу работы электрического преобразователя. При выполнении исследований в сфере электричества Фарадей изложил в своих записях опыт, в котором он накрутил на железное кольцо окружностью пятнадцать сантиметров и толщиной два сантиметра две медных проволоки длиной пятнадцать и восемнадцать сантиметров.

История появления трансформатора

Изображение будущего трансформатора на схеме впервые обнаружили 1831 году в работах М. Фарадея и Д. Генри. Позже Г. Румкорф придумал индукционную катушку особой конструкции, которая являлась, по сути, первым трансформатором.

Братья Гопкинсон создали теорию электромагнитных цепей. Они первыми научились рассчитывать магнитоцепи. Но они не понимали одного: этот прибор имеет свойство изменения напряжения и тока, а именно изменения переменного тока в постоянный, что и делает трансформатор. Эптон, помощник Эдисона, порекомендовал делать сердечники наборными, из отдельных листов металла, чтобы вихревые токи были локализированы.

Охлаждение при помощи масла повлияло на надежную работу преобразователя в лучшую сторону. Свинберн опускал трансформатор в керамический сосуд, наполненный маслом, что в разы повышало надёжность изоляционной обмотки.

В 1928 году было начато производство силовых трансформаторов в СССР, на Московском трансформаторном заводе. В начале 1900-х ученый-металлург Р. Хедфилд на основе своих опытов выяснил, что разнообразные добавки влияют на свойства железа. В ходе дальнейших экспериментов он разработал первый пробник стали, в состав которой входил кремний. Следующим шагом в процессе производства сердечников было установление того факта, что при смешанном воздействии прокатки и нагревания у стали, содержащей кремний, появляются элементарные новые магнитные свойства: магнитное обогащение возросло на 50 %, траты на гистерезис уменьшились в 4 раза, а магнитное проникание увеличилось в 5 раз.

Назначение и применение

Трансформатор – это статический электромагнитный преобразователь с двумя или больше неподвижными обмотками, который предназначен для преобразования с помощью электромагнитной индукции параметров электрических величин. Трансформаторы применяются в энергетических системах при передаче электроэнергии от электрической станции к потребителю и в разнообразных электроустановках для получения напряжений нужной величины.

В данной статье приведен пример простого трансформатора небольшой мощности, который часто применяется в устройствах автоматики, измерительно–вычислительной технике, различных приборах.

Устройство трансформатора

Рис. 1 Электромагнитная схема трансформатора однофазного в режиме работы.

Первичная и вторичная обмотка

Трансформатор имеет две обмотки:

  • первичную (I) – к которой мы подводим электрическую энергию;
  • вторичную (II) – к которой мы прикрепляем электроприемник.

Может быть высокого (в.н.) и низкого (н.н.) напряжения

В случае когда вторичное напряжение менее первичного, трансформатор понижающий преобразует электроэнергию с 380 В до 220 В, если происходит наоборот, тогда трансформатор повышающий.

Давайте подробнее разберём, что делает и как устроен трансформатор, изображённый на рисунке 1.

Принцип работы

На обмотку возбуждения подаём переменное напряжение U1, так как обмотка возбуждения обладает сопротивлением, создаётся электрический ток. Ток, проходя по виткам, наводит магнитодвижущую силу, а магнитодвижущая сила наводит магнитный поток. Магнитный поток идет по сердечнику, проходя все витки первичной и вторичной обмоток. В этом случае магнитный поток (Фт) является основным, т. е. рабочим. Вторая (меньшая) часть потока замыкается при помощи воздуха, проходя только через витки первичной обмотки, и является потоком рассеивания Фs1.

Если вторичная цепь (питаемая от вторичной (II) обмотки) разомкнута, то, естественно, ток отсутствует, нет возможности образования магнитного поля. Но вот мы замкнули (II) цепь, по ней пошёл ток. Значит, образуется магнитное поле, которое, в свою очередь, создаёт два магнитных потока:

  • 1 поток — в сердечник;
  • 2 поток — замыкается по воздуху.

Это означает, что вокруг (II) обмотки тоже наводится поток рассеивания. Потоки рассеивания подобны магнитному потоку самоиндукции, создающему ток в той или иной катушке индуктивности и различном проводе. Потоки являются вредными. В применении правила электромагнитной индукции при изменении главного магнитного потока наводится ЭДСв (I) Е1 и во (II) Е2 обмотках.

Так как по (I) спирали с числом витков w1 и по (II) спирали с числом витков w2 проходит один и тот же основной поток, то, следовательно, в каждом витке обеих спиралей наводится равная по значению ЭДСе. Таким образом, Es1 = ew1 и Еs2 = ew2, из этого следует, что К — коэффициент изменения трансформатора.

Поток рассеивания наводит электродвижущая сила рассеивания в первичной обмотке Es 1. Значит, напряжение, подведённое к (I) обмотке трансформатора U1, должно соответствовать падению напряжения в действующем сопротивлении I1 r1 (I) обмотки,электродвижущая сила Esl рассеивания и ЭДС E1 главного потока.

Читайте также:  Сколько стоит наждак электрический

При разъединенной (II) цепи, Es 1 и I1 r1 ничтожно малы, значит, электродвижущая сила Е1, наведённая в (I) обмотке, в полном объёме оправдывает приложенное напряжение U1. При размыкании (II) цепи ЭДС Е2 электрический ток перестаёт поступать, но если замкнуть (II) обмотку,подключив электроприемники, то под воздействием (II) ЭДС по (II) цепи пойдёт ток, подходящая к трансформатору (I) мощность изменяется во (II) и применяется для приёмников электроэнергии.

Если не брать во внимание потери, можно принять, что подходящая мощность E1 I1 почти равна (II) мощности Е2 I2 (I1 и I2 — (I) и (II) токи трансформатора). То есть при изменении (I) и (II) токи примерно обратно пропорциональны числам соответствующих обмоток. (II) ток I2, протекая по спирали, создаёт ампер-спираль I2 w2 , проходящие в той же цепи трансформатора, что и ампер-витки (I) спирали. Значит, при нагрузке главный электромагнитный поток будет ориентироваться на совместное действие ампер-витков l1 w1 (I) и ампер-витков I2 w2 (II) обмоток.

По закону Джоуля-Ленца электроиндукционный во второстепенной обмотке ток сосредоточен так, что тормозит изменение электромагнитного потокосцепления. Перемена электромагнитного потока провоцируется первичными ампер-витками l1 w1. Необходимо протекание II тока в таком направлении, чтобы образовавшиеся ампер — спирали работали в противоположную сторону от I обмотки. Падение главного магнитного потока из-за потери магнитного действия II ампер — спиралей спровоцирует упадок индукционной и электродвижущей силы в I обмотке.

В случае когда напряжение, поступающее к клемам I обмотки, постоянное, при падении оно не выравнивает напряжение, из-за этого ток возрастает до параметров, при которых возобновляется равенство напряжений. При этом главный магнитный поток обязан сохранять параметры, равные величине главного потока при свободном ходе. При любых нагрузках преобразователя напряжение U1 должно соответствовать электродвижущей силе Е1 (понижение напряжения в I обмотке игнорируем).

Необходимо, чтобы главный электромагнитный поток Фт оставался постоянным при различной нагрузке трансформатора. Ток I1 в (I) обмотке должен компенсировать воздействие ампер-витков, возникающих при токе I2 во (II) обмотке. Напряжение на клеммах (I) обмотки всегда менее ЭДС Е2 в результате уменьшения напряжения в активном и реактивном противодействиях вторичной обмотки.

Классификация и разновидности

Трансформаторы бывают с содержанием масла и без масла — сухие. В содержащих масло приборах рабочая часть (обмотка и магнитная система) находится в баке, наполненном трансформаторной жидкостью. Рабочая часть сухих трансформаторов остывает при помощи окружающего воздуха. Масштаб мощностей энергосиловых масляных – от 10 кВА до 630 тысяч кВА, сухих – от единиц ВА до 1600 кВА.

Силовые однофазные трансформаторы мощностью 4 кВА и меньше и трехфазные – 5 кВА и меньше имеют отношение к устройствам малой мощности. Они часто используются в трансформационной, домашней технике, радиоэлектронной аппаратуре.

Маркировки масляных устройств

  • ТМ – масляный, трехфазный;
  • О – имеет одну фазу;
  • Н – есть возможность управления напряжением при работе;
  • Р – наличие раздельной обмотки;
  • Д – охлаждение с выдуванием при помощи масла (обдув теплообменников трансформатора вентиляторами);
  • Ц – вращающееся охлаждение масла с помощью его вывода из бака и охлаждения воздухом или водой.

Далее пишут цифры, которые обозначают мощность и первое напряжение.

Допустим: ТМ – 1000/10 – трансформатор, работающий на масле, мощностью (P) 1 тыс. кВА, 10 кВ. Сухие трансформаторы обозначаются:

  • ТСЗ – трансформатор имеет три фазы, сухой, защищённый. Они выпускаются в маштабе мощностей от 10 до 1600 кВА;
  • ВН (высокое напряжение) – 380, 500, 660, 10 тыс. В;
  • НН (низкого напряжения) – 230 и 400 В.

Приборы маленькой мощности поступают в продажу, имея большое количество серий, типов и размеров. С силовыми очень часто прилагаются трансформаторы, измеряющие ток и напряжение. При помощи трансформаторов тока можно обеспечить безопасную работу цепей релейной защиты и определить любой объем тока специальными приборами. Их паспортный вторичный ток 1 и 5 А.

Первичный ток – в диапазоне от 5 А до 24000 А при напряженной работе данной сети от 0,4 до 24 кВ. Трансформаторы, работающие на ток и напряжение, производятся серийно 35, 110, 220, 330, 500, 750 кВ.

Основные обозначения:

  • Т – трансформатор тока;
  • П – проходящий;
  • Л – цельная изоляция на базе смол;
  • М – мало занимающий место;
  • О – односпиралевый;
  • Н – навесной;
  • Ш – с применением шины;
  • У – мощный;
  • К – встраиваемый в комплексные трансформаторные станции.

ТН применяются в цепях непостоянного тока напряжением от 0,4 до 1150 кВ для питания определяющих приборов и цепей релейной защиты. ТН до 35 кВ инклюзивно применяются в сетях с защищённой нейтралью. Класс надёжности 0,5; 1 и 3 соответствует самой большой погрешности в % измеряемого паспортного напряжения 0,5%; 1%; 3%.

Читайте также:  Как работает редуктор газового баллона

ТН делятся на сухие и масляные. Обозначения ТН:

  • Н – трансформатор напряжения;
  • О – однофазный;
  • С – сухого исполнения;
  • М – масляным охлаждением;
  • З – заземление выводом первичной обмотки;
  • К – компенсацией угловой погрешности трансформатора;
  • Л – исполнение с литой изоляцией;
  • Э – для установки на экскаваторах.

Трансформаторы типа НОС, НОЛ, ЗНОЛ – сухие , НОМ, НОМЭ, НТМК, НТМИ, ЗНОМ – масляные природным охлаждением.

В этой статье мы поговорим о трансформаторах, устройствах способных повышать или понижать напряжение при переменном токе. Существуют различные по конструкции и предназначению трансформаторы. Например есть как однофазные, так и трехфазные. На фото изображен однофазный трансформатор:


Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:

Принципиальная схема трансформатора

Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки. Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны. Также трансформаторы могут использоваться для гальванической развязки цепей.

Принцип работы трансформатора

Принцип действия трансформатора

Коэффициент трансформации – формула

Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15. Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1кт = 22015 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.66 вольт.

Трансформаторы на схемах

Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

Цифрой "1" обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Сварочные трансформаторы

Существуют специальные сварочные трансформаторы.

Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.

Силовые трансформаторы

Фото высоковольтный трансформатор

Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание.

Трансформатор 6 киловольт

У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока – фото

Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор – изображение на схеме

Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото:

Фотография – тороидальный трансформатор

Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов – рисунок

Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

Бытовая электрическая сеть имеет напряжение 220 вольт, на которое рассчитано большинство электроприборов. При этом часто возникает необходимость понижения напряжения до 12 В для питания отдельных потребителей – низковольтных нагревателей, галогенных ламп и питания других устройств (светодиодные ленты и т. д.), рассчитанных на переменный ток. Такое преобразование обеспечивается трансформатором, который имеет небольшие размеры и цельный корпус.

Конструкция, принцип работы

Стандартный трансформатор для понижения напряжения состоит из 2х обмоток (первичной и вторичной), намотанных на ферримагнитный сердечник медным проводом. Первичную подсоединяют в сеть, а вторичную к нагрузке. Принцип работы такого устройства заключается в следующем:

  1. Напряжение, поданное на первичную обмотку, генерирует вокруг сердечника переменное поле.
  2. Магнитная индукция при подсоединении к нагрузке создает в витках вторичной обмотки напряжение, а от первичной обмотки будет поступать энергия, отдаваемая в цепь вторичной.

На величину выходного напряжения оказывает влияние соотношение и число витков каждой обмотки. Регулируя этот показатель, можно добиться любого значения тока на вторичной обмотке, и получить как понижающий, так и повышающий трансформатор. При этом нужно иметь в виду, что прибор, подключенный к бытовой сети 220 В, выдаст переменное напряжение, которое после при необходимости можно преобразовать выпрямителем.

В настоящее время широко применяются понижающие устройства электронного типа, изготовленные на основе полупроводников, работу которых дополняет интегральная схема. Они имеют определенные преимущества в виде малых размеров, высокого КПД, небольшого веса, отсутствия нагрева и шума, возможности осуществления регулировки тока, защиты от короткого замыкания. Но традиционный трансформатор продолжает активно применяться из-за надежности и простоты конструкции.

Выбор готового решения, критерии

Магазины электротехники и электроники предлагают готовые бытовые трансформаторы для различных нужд. Выбирая необходимое устройство, нужно руководствоваться следующими критериями:

  1. Параметрами входного напряжения. Корпус прибора должен быть отмечен маркировкой 220 или 380 В. В данном случае необходим бытовой вариант для сети 220 вольт.
  2. Параметрами входного напряжения, которые должны соответствовать 12 В.
  3. Мощностью. Для этого предварительно подсчитывают суммарную нагрузку, которая будет запитана через трансформатор. Данный показатель устройства должен превышать расчетное значение минимум на 20%.

При помощи трансформатора, преобразующего 220 до 12 В, можно хорошо сэкономить на защитных материалах и кабеле, реализовав на его основе бытовую систему освещения, применив галогеновые лампы и светодиодные ленты. Это безопасная схема в плане поражения электротоком, к тому же защищенная от перепадов напряжения и короткого замыкания. Подобные системы исключают возможность возникновения пожаров.

На видео рассказ про покупку готового решения

Разновидности

Понижающие трансформаторы классифицируются, исходя из вида исполнения (открытые или имеющие корпус) и по применению (промышленные, бытовые). Также устройства делятся по способу крепления:

  1. Стержневой, в котором обмотки собирают вокруг стержня, а его самого устанавливают только в вертикальном положении.
  2. Броневой, в котором применяется броневая обмотка, позволяющая устанавливать прибор в любом положении.

Обзор готовых моделей

Среди готовых моделей устройств, представленных в магазинах электротехники для преобразования тока бытовой сети 220 в 12 вольт, можно отметить следующие:

  • ЯТП-0,25. Трансформатор в корпусе, мощность 250 Вт. Цена 1700 руб.
  • ОСМ-1-04. Понижает напряжение со 127-100 или 220 до 12 вольт. Без корпуса. Цена 2600 руб.
  • ОСЗ-1 У2 220/12. Понижающий трансформатор, мощностью 1 кВт. Цена 5300 руб.
  • ТСЗИ-4,0. Мощность 4 кВт, КПД более 90%, в корпусе. Преобразует 380 или 220 В, в 110 и 12 вольт. Цена 10500 руб.
  • ТСЗИ-2,5 кВт. Устройство понижает напряжение с 380/220 до 12 В. Изготовлен в металлическом переносном корпусе. Цена 13900 руб.
  • Т600W. Мощность 600 Вт, выходное напряжение 12-18 В. Цена 39 тыс. руб.

Средние цены по регионам

В зависимости от местоположения региона, цена на один и тот же трансформатор может различаться. К примеру, трансформатор ОСО 0,25 220/12 в различных городах будет иметь разную стоимость:

Читайте также:  Таблица перевода твердости по шору
Город Цена Город Цена
Алматы 600 Екатеринбург 595
Москва 605 Ростов-на-Дону 595
Челябинск 600 Пермь 595
Новосибирск 600 Владивосток 595

Самостоятельное изготовление

При необходимости изготовления понижающего трансформатора с 220 до 12 В, после проведения расчетов мощности изделия приступают к приобретению необходимых материалов. Для этого понадобятся:

  1. Сердечник. Можно использовать эту часть подходящего размера от вышедшего из строя телевизионного трансформатора.
  2. Эмалированный медный провод необходимого сечения.
  3. Ленточную изоляцию (лакоткань), пропарафиненную бумагу и картон.

Намотку витков можно производить вручную или изготовить для этого своими руками простой намоточный станок, схема которого находится в свободном доступе в сети. Размер изделия будет зависеть от размера сердечника. Если он имеет форму кольца, то намотку витков придется производить вручную.

Процесс самостоятельного изготовления трансформатора состоит из следующих этапов:

Ссылка на основную публикацию