Площадь правильного шестиугольника через радиус вписанной окружности

Правильным шестиугольником называется выпуклый многоугольник с шестью одинаковыми сторонами и шестью углами.

Внутренние углы в правильном шестиугольнике равны (120^circ):
(alpha = 120^circ)

Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
(m = alargefrac<<sqrt 3 >><2>
ormalsize)

Радиус вписанной окружности правильного шестиугольника равен апофеме:
(r = m = alargefrac<<sqrt 3 >><2>
ormalsize)

Радиус описанной окружности равен стороне правильного шестиугольника:
(R = a)

Периметр правильного шестиугольника
(P = 6a)

Площадь правильного шестиугольника
(S = pr = largefrac<<3sqrt 3 >><2>
ormalsize),
где (p) − полупериметр шестиугольника.

Если внимательно посмотреть на правильный шестиугольник, то можно увидеть, что он состоит из шести равносторонних треугольников со стороной a .

Площадь правильного шестиугольника равна площади равностороннего треугольника умноженной на шесть.

Шестиугольник или гексагон — это правильный многоугольник, у которого стороны равны между собой, а каждый угол равен строго 120 градусов. Гексагон иногда встречается в человеческой повседневности, поэтому вам может понадобиться вычислить его площадь не только в школьных задачах, но и в реальной жизни.

Выпуклый шестиугольник

Гескагон — это правильный выпуклый многоугольник, соответственно, все его углы равны, все стороны равны, а если провести отрезок через две соседние вершины, то вся фигура окажется по одну сторону от этого отрезка. Как и в любой правильный n-угольник, вокруг гексагона можно описать окружность или вписать ее вовнутрь. Главная особенность шестиугольника заключается в том, что длина радиуса описанной окружности совпадает с длиной стороны многоугольника. Благодаря этому свойству можно легко найти площадь гексагона по формуле:

S = 2,59 R 2 = 2,59 a 2 .

Кроме того, радиус вписанной окружности соотносится со стороной фигуры как:

Читайте также:  Пугач под строительный патрон

Из этого следует, что вычислить площадь шестиугольника можно, оперируя одной из трех переменных на выбор.

Гексаграмма

Звездчатый правильный шестиугольник предстает перед нами в виде шестиконечной звезды. Такая фигура образуется путем наложения друг на друга двух равносторонних треугольников. Самой известной реальной гексаграммой является Звезда Давида — символ еврейского народа.

Шестиугольные числа

В теории чисел существуют фигурные числа, связанные с определенными геометрическими фигурами. Наибольшее применение находят треугольные и квадратные, а также тетраэдрические и пирамидальные числа, используя которые легко выкладывать геометрические фигуры при помощи реальных предметов. Например, пирамидальные числа подскажут вам, как сложить пушечные ядра в устойчивую пирамиду. Существуют также и шестиугольные числа, которые определяют число точек, необходимое для построения гексагона.

Шестиугольник в реальности

Гексагоны часто встречаются в реальной жизни. К примеру, сечения гаек или карандашей имеют шестиугольную форму, благодаря чему обеспечивается удобный обхват предмета. Шестиугольник — это эффективная геометрическая фигура, способная замостить плоскость без пробелов и наложений. Именно поэтому шестиугольную форму часто имеют декоративные отделочные материалы, например, кафельная и тротуарная плитка или гипсокартонные панели.

Эффективность гексагона делает его популярным и в природе. Пчелиные соты обладают именно шестиугольной формой, благодаря которой пространство улья заполняется без пробелов. Еще одним примером гексагонального замощения плоскости является Тропа Великанов — памятник живой природы, сформированный во время извержения вулкана. Вулканический пепел был спрессован в шестиугольные колонны, которые замостили поверхность побережья Северной Ирландии.

Упаковка кругов на плоскости

И еще немного об эффективности гексагона. Упаковка шаров — классическая задача комбинаторной геометрии, которая требует найти оптимальный способ укладки непересекающихся шаров. На практике такая задача превращается в логистическую проблему упаковки апельсинов, яблок, пушечных ядер или любых других шарообразных объектов, которые требуется уложить максимально плотно. Гескагон — решение данной проблемы.

Читайте также:  Чем лучше выложить двор своего дома

Известно, что наиболее эффективным расположением кругов в двухмерном пространстве является размещение центров окружностей на вершинах шестиугольников, которые заполняют плоскость без пробелов. В трехмерной реальности задача размещения шаров решается путем гексагональной укладки объектов.

При помощи нашего калькулятора вы можете вычислить площадь правильного шестиугольника, зная его сторону или радиусы соответствующих окружностей. Давайте попробуем вычислить площади гексагонов на реальных примерах.

Примеры из реальной жизни

Гигантский гексагон

Гигантский гексагон — уникальное атмосферное явление на Сатуре, которое выглядит как грандиозный вихрь в форме правильного шестиугольника. Известно, что сторона гигантского гексагона составляет 13 800 км, благодаря чему мы можем определить площадь «облака». Для этого достаточно ввести значение стороны в форму калькулятора и получить результат:

Таким образом, площадь атмосферного вихря на Сатурне приблизительно составляет 494 777 633 квадратных километров. Поистине впечатляет.

Гексагональные шахматы

Мы все привыкли к шахматному полю, разделенному на 64 квадратные ячейки. Однако существуют и гексагональные шахматы, игровое поле которых разделено на 91 правильный шестиугольник. Давайте определим площадь игровой доски для гексагональной версии известной игры. Пусть сторона ячейки составляет 2 сантиметра. Площадь одной игровой клетки составит:

Тогда площадь всей доски будет равна 91 × 10,39 = 945,49 квадратных сантиметров.

Заключение

Шестиугольник часто встречается в реальности, хотя мы и не замечаем этого. Используйте наш онлайн-калькулятор для расчета площадей гексагонов при решении повседневных или школьных задач.

Ссылка на основную публикацию