Какой прибор используется для измерения напряжения

Вольтметр (вольт + греч. μετρεω «измеряю») — электроизмерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Содержание

История [ править | править код ]

Первым в мире вольтметром был «указатель электрической силы» русского физика Г. В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

Классификация и принцип действия [ править | править код ]

Классификация [ править | править код ]

  • По принципу действия вольтметры разделяются на:
  • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
  • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
    • По конструкции и способу применения:
      • щитовые;
      • переносные;
      • стационарные
      • Аналоговые электромеханические вольтметры [ править | править код ]

        • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются последовательно включённые добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
        • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
      • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
        • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
        • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
          • ПРИМЕРЫ: Т16, Т218
          • Аналоговые электронные вольтметры общего назначения [ править | править код ]

            Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

            Цифровые электронные вольтметры общего назначения [ править | править код ]

            Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

            Диодно-компенсационные вольтметры переменного тока [ править | править код ]

            Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

            • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

            В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

            Импульсные вольтметры [ править | править код ]

            Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

            Фазочувствительные вольтметры [ править | править код ]

            Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

            Селективные вольтметры [ править | править код ]

            Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

            • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

            Приборы для измерения напряжения

            Первый учёный, который сконструировал и создал достаточно мощную электрическую батарею постоянного тока, был известный итальянский физик Александро Вольта. Эта батарея получила название «вольтов столб» и состояла из нескольких тысяч кружочков из цинка и меди, которые разделялись пропитанными в соляной кислоте матерчатыми прокладками. Он использовал батареи с большим или меньшим количеством элементов. Маленькие батареи давали слабую искру, большие батареи сильную и яркую.

            Читайте также:  Из старых автомобильных дисков

            Учёный вплотную подошёл к количественному понятию напряжения, поэтому единицу разности потенциалов назвали его именем: «Вольт». В международной системе единиц СИ вольт обозначается буквой «V», отсюда напряжение переменного тока обозначается: VAC, а напряжение постоянного тока: VDC. У нас единица величины напряжения обозначается буквой «В» – вольт. Например, 220 В, 380 В и наиболее часто используемые производные: 10 3 -киловольт (kV), 10 6 -мегавольт, 10 -3 -милливольт (mV), 10 -6 -микровольт (μV). Другие большие или меньшие производные используются только в лабораторных условиях. Подробнее о производных величинах читайте на странице про сокращённую запись численных величин.

            Для измерения напряжения или разности потенциалов используется прибор, который называется вольтметр. На снимке изображён щитовой стрелочный вольтметр, который может монтироваться на щите управления, какого либо устройства. Он используется только для измерения конкретной величины напряжения на одном из узлов данного устройства. Тот вольтметр, что изображён на фото, применяется для измерения постоянного напряжения до 15 вольт. Взгляните на его шкалу. Она ограничена 15 вольтами.

            На принципиальных схемах условное изображение вольтметра может выглядеть вот так.

            Из рисунка видно, что условное изображение вольтметра на схеме может быть разным. Если в кружке обозначена буква «V», то это означает, что данный вольтметр рассчитан на измерения величин напряжения, составляющих единицы – сотни вольт. Изображения с обозначением «mV» и «μV» указываются в тех случаях, если вольтметр рассчитан на измерение долей вольта – милливольт (1mV = 0,001V) и микровольт (1μV = 0,000001 V). Иногда рядом с изображением вольтметра также указывается максимальная величина напряжения, которую способен измерить вольтметр. Например, вот так – 100 mV. Обычно эта величина указывается для встраиваемых стрелочных вольтметров. Превышать это напряжение не стоит, так как можно испортить прибор.

            Кроме этого, рядом с выводами вольтметра могут быть проставлены знаки полярности подключения его в схему « +» и «». Это касается тех вольтметров, которые применяются для измерения постоянного напряжения.

            Следует отметить, что щитовые вольтметры это частный случай использования этих приборов. В лабораториях, на радиозаводах, в конструкторских бюро и радиолюбительской практике, вольтметры используются чаще всего в составе мультиметров, которые раньше назывались авометры, то есть ампер-вольт-омметр.

            В настоящее время с развитием цифровой электроники стрелочные приборы отходят в прошлое и им на смену приходят цифровые мультиметры с удобной цифровой шкалой, автоматическим переключением предела измерения, малой погрешностью и высоким классом точности.

            В радиолюбительской практике на смену «цешкам» и «авошкам» пришли компактные и удобные цифровые приборы. Работать с ними не сложно, но определённые меры безопасности применять необходимо.

            Как измерить напряжение мультиметром?

            Следует твёрдо помнить, что вольтметр, в отличие от амперметра подключается параллельно нагрузке.

            Например, вам надо замерить напряжение на резисторе, который является частью электронной схемы. В таком случае переключаем мультиметр в режим измерения напряжения (постоянного или переменного – смотря какой ток течёт в цепи), устанавливаем наивысший предел измерения. По мере накопления опыта предел измерения вы научитесь выставлять более осознанно, порой пренебрегая данным правилом. Далее подключаем щупы мультиметра параллельно резистору. Вот как это можно изобразить в виде схемы.

            Вот так плавно мы переходим к определению так называемого шунта. Как видим из схемы, вольтметр, который измеряет напряжение на резисторе R1, создаёт параллельный путь току, который протекает по электрической цепи. При этом часть тока (Iшунт) ответвляется и течёт через измерительный прибор – вольтметр PV1. Далее опять возвращается в цепь.

            В данном случае вольтметр PV1 шунтирует резистор R1 – создаёт обходной путь для тока. Для электрической цепи вольтметр – это шунт – обходной путь для тока. По закону ома, напряжение на участке цепи зависит от протекающего по этой цепи тока. Но мы ведь ответвили часть тока в цепи и провели эту часть через вольтметр. Поскольку сопротивление резистора неизменно, а ток через резистор уменьшился (IR1), то и напряжение на нём изменилось. Получается, что вольтметром мы измеряем напряжение на резисторе, которое образовалось после того, как мы подключили к схеме измерительный прибор. Из-за этого образуется погрешность измерения.

            Как же уменьшить воздействие измерительного прибора на электрическую цепь при проведении измерений? Необходимо увеличить, так называемое «входное сопротивление» измерительного прибора – вольтметра. Чем оно выше, тем меньшая часть тока шунтируется измерительным прибором и более точные данные мы получаем при измерениях.

            Современные цифровые мультиметры обладают достаточно большим входным сопротивлением и практически не влияют на работу схемы при проведении измерений. При этом точность измерений, естественно, достаточно высока.

            Ранее все приборы были стрелочные, а для того, чтобы высоким напряжением не вывести прибор из строя применялись резистивные шунты, которые уменьшали величину измеряемого напряжения до безопасной величины. Но эти шунты вносили так называемое «паразитное сопротивление» и это сказывалось на точности измерений.

            Читайте также:  Где обжать кабель для интернета

            Поэтому в лабораторных условиях использовались специальные ламповые вольтметры, которые обладали большим входным сопротивлением и некоторые из них имели класс точности в доли процента.

            Перейдём к практике.

            Прежде всего, не забывайте, что есть переменное (англ. сокращение – VAC) и постоянное напряжение (VDC). Профессиональные приборы сами определяют, с каким напряжением вы работаете, и сами переключаются в нужный режим и на требуемый поддиапазон измерений. При работе с малогабаритными приборами все переключения нужно делать вручную.

            На снимке показана часть панели управления популярного и недорогого тестера DT-830B.

            Хорошо видно, что пределы измерения переменного напряжения ограничены величинами: 750 вольт (750 V

            ) и 200 вольт (200 V

            ). Понятно, что к силовым промышленным сетям с этим прибором не стоит и близко подходить. Шкала постоянного и импульсного напряжения несколько больше: от 200 милливольт (200 mV) до тысячи вольт (1000).

            Как уже говорилось, чтобы замерить напряжение на участке схемы, нужно выбрать переключателем пределов измерения самый большой предел измерения и подключить щупы мультиметра параллельно тому участку цепи, на котором производится замер.

            Если предел измерения подходит – то на дисплее появятся показания. Если этого не происходит, то отключаем вольтметр от схемы, уменьшаем предел измерения на один шаг. Повторяем измерение. И так далее до получения показаний.

            Имейте в виду, что провода измерительных щупов со временем изнашиваются. При этом нарушается электрический контакт. Перед проведением любых измерений проверяйте целостность щупов!

            Также часто бывает необходимо замерить напряжение на выходе блока питания или химического источника тока (батарейки или аккумулятора).

            Выбираем ту секцию на панели прибора, которая отвечает за измерение постоянного напряжения. Выставляем предел чуть больше того напряжения, что мы хотим измерить. Далее подключаем щупы прибора в соответствии с полярностью и изменяем предел измерения в сторону уменьшения до тех пор, пока на табло не появятся данные.

            На фото показан замер напряжения составной батареи из трёх батареек 1,5V с помощью мультиметра Victor VC9805A+. Для измерения выбран предел 20V.

            Аналогично замеряется напряжение на герметичном свинцовом аккумуляторе.

            Стоит понимать, что таким образом мы замеряем так называемую ЭДС. ЭДС или электродвижущая сила – это напряжение на клеммах аккумулятора без подключенной нагрузки. Если к аккумулятору подключить какой-либо прибор, то напряжение будет чуть меньше.

            Никогда не касайтесь руками оголённых щупов! Небольшим напряжением от 1,5-вольтовой батарейки вас, конечно, не убьёт, но вот при измерении напряжений более 24 вольт могут быть серьёзные последствия от удара током.

            Чтобы руки оставались свободными используйте зажимы типа «крокодил», но подключать их нужно при отключенном от сети приборе. Часто возникает необходимость измерять напряжение на рабочей плате, в разных её точках.

            Если вы работаете с низковольтным устройством, бойтесь только закоротить щупами отдельные проводники. Для замеров напряжения в устройстве, как правило, применяется следующая методика.

            Соедините «земляной» щуп прибора и «землю» платы как можно надёжнее. Работать одним щупом всегда удобнее. Для тех, кто не в курсе, «земляным» или «общим» щупом у прибора называется тот щуп, который подключается к разъёму COM. Обычно он чёрного цвета. Сокращение COM получено от английского слова common – «общий».

            Наденьте на рабочий щуп прибора кусочек трубки ПВХ, оставив только крохотный острый кончик. Это делать не обязательно, но желательно. При случайном касании щупом соседних проводников трубка ПВХ изолирует контакты и убережёт от короткого замыкания.

            По принципиальной схеме, в контрольных точках проведите нужные вам замеры по отношению к «земле» – корпусному или по-другому общему проводу. Высокое входное сопротивление тестера работу вашей схемы не нарушит.

            Измерение переменного напряжения производится аналогичным образом. Можно для пробы измерить переменное напряжение электросети в собственной квартире.

            На снимке видно, что установлен максимальный предел 750 вольт (напряжение переменное – V

            ). При установке этого предела на индикаторе высвечиваются две буквы: HV – высокое напряжение (сокращение от англ. – High Voltage). Поскольку напряжение переменное, то полярность не имеет значения. В данном случае величина напряжения сети – 217 вольт.

            Как уже говорилось, при работе с высоким напряжением следует соблюдать правила электробезопасности.

            Электроизмерительные приборы – общее

            Текст В настоящее время существуют приборы, с помощью которых могут быть произведены измерения более 50 электрических величин. Перечень электрических величин включает в себя ток, напряжение, частоту, отношение токов и напряжений, сопротивление, емкость, индуктивность, мощность и т.д. Появление множества технических средств реализующих измерения, являеться вытекающим из многообразия количества измеряемых величин . Электроизмерительную аппаратуру и приборы можно классифицировать по ряду признаков. По функциональному признаку эту аппаратуру и приборы можно разделить на средства сбора, обработки и представления измерительной информации и средства аттестации и поверки.

            Электроизмерительную аппаратуру по назначению можно разделить на меры, системы, приборы и вспомогательные устройства. Кроме того, важный класс электроизмерительных приборов составляют преобразователи, предназначенные для преобразования электрических величин в процессе измерения или преобразования измерительной информации.

            Читайте также:  Состав очистителя монтажной пены

            Здесь будет рассмотрена лишь часть измерительных приборов, необходимых для ремонта и обслуживания бытовых электроприборов и электрооборудования! Так же будут представлены некоторые приборы не применяемые в быту, а описаны лиш для общего ознакомления!

            Измерение силы тока, количества электричества и зарядов – Трансформаторы тока, амперметры, вольтметры, мультиметры

            Трансформаторы тока – служат для передачи сигналов измерительной информации измерительным приборам и/или устройствам защиты и управления в электросетях переменного тока промышленной частоты.

            Амперметры и вольтметры – служат для измерения тока и напряжения в электросетях.

            Амперметр и вольтметр

            Мультиметры- служат для измерения основных электрических величин: напряжения и силы постоянного и переменного токов, а также сопротивления постоянному току и тестирования p-n переходов и др. так же применяются при изготовлении, эксплуатации и ремонте электро- и радиоаппаратуры.

            Измерение ЭДС и напряжения – Трансформаторы напряжения, вольтметры

            Трансформаторы напряжения – служат для измерений высоких напряжений переменного тока промышленной частоты.

            Измерение мощности и энергии – Счетчики электрической энергии, ваттметры

            Счетчики электрической энергии – служит для измерения и учета активной/реактивной энергии.

            Счетчики электрической энергии

            Ваттметры – для точных измерений мощности в цепях постоянного и переменного тока, а также для поверки менее точных приборов.

            Измерение показателей качества электрической энергии и АСКУЭ

            Система информационно-измерительная автоматизированная коммерческого учета электроэнергии – для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения и отображения информации, для коммерческого учета электроэнергии.

            Измерение показателей качества электрической энергии и АСКУЭ

            Прочие (Измерения электрических и магнитных величин) – Контроллеры, измерительные системы и комплексы.

            Контроллеры – служат для измерения, регистрации и обработки напряжения и силы постоянного тока, параметров однофазных и трехфазных цепей переменного тока (действующих значений напряжения и силы переменного тока, активной, реактивной и полной мощности, частоты, угла сдвига фаз), их преобразования в цифровой код, а также для формирования аналоговых сигналов управления технологическим оборудованием в различных отраслях промышленности, главным образом энергетике.

            Комплексы измерительные – служат для измерения параметров импульсных электромагнитных помех с целью определения качества выполнения заземляющего устройства (ЗУ), область применения – оборудование энергообъектов , электрические цепи (электрощиты) зданий и промышленных помещений.

            Системы измерительные – служит для непрерывного измерения и контроля технологических параметров.

            Измерение электрического сопротивления, проводимости, емкости, угла сдвига фаз, индуктивности и добротности электрических цепей, параметров диэлектриков – Мегаомметры, измерители сопротивления.

            Измерение характеристик магнитных полей, свойств магнитных материалов – Тесламетры, измерители магнитной индукции.

            Самописцы – приборы для вывода результатов измерений температуры, напряжения и тока, влажности, интегральных импульсов и вращения с возможностью сохранения данных и вывода их на бумажный носитель.

            Метрологическое оборудование – Генераторы эталонных электрических сигналов, прецизионные мультиметры, калибраторы тестового оборудования, многофункциональные калибраторы, эталонные счетчики электрической энергии для оснащения лабораторий и работы в полевых условиях.

            Измерение параметров высоковольтного оборудования – Импульсный локатор повреждений кабеля, прибор контроля выключателей, прибор контроля РПН трансформаторов…

            Локатор повреждения кабеля

            Электроизмерительные приборы по материалам Википедии.

            Применение – Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.

            Классификация

            • Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
            • амперметры — для измерения силы электрического тока;
            • вольтметры — для измерения электрического напряжения;
            • омметры — для измерения электрического сопротивления;
            • мультиметры – (иначе тестеры, авометры) — комбинированные приборы
            • частотомеры — для измерения частоты колебаний электрического тока;
            • магазины сопротивлений — для воспроизведения заданных сопротивлений;
            • ваттметры и варметры — для измерения мощности электрического тока;
            • электрические счётчики — для измерения потреблённой электроэнергии
            • и множество других видов
            • Кроме этого существуют классификации по другим признакам:
            • по назначению — измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;
            • по способу представления результатов измерений — показывающие и регистрирующие ( в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);
            • по методу измерения — приборы непосредственной оценки и приборы сравнения;
            • по способу применения и по конструкции — щитовые (закрепляемые на щите или панели), переносные и стационарные;
            • по принципу действия: лектромеханические, магнитоэлектрические, электромагнитные, электродинамические электростатические, ферродинамические, индукционные, магнитодинамические, электронные, термоэлектрические, электрохимические.

            Обозначения

            Зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число — условный номер модели. Например: С197 — киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.

            • В — приборы вибрационного типа (язычковые)Д — электродинамические приборы
            • Е — измерительные преобразователи
            • И — индукционные приборы
            • К — многоканальные и комплексные измерительные установки и системы
            • Л — логометры
            • М — магнитоэлектрические приборы
            • Н — самопишущие приборы
            • П — вспомогательные измерительные устройства
            • Р — меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей
            • С — электростатические приборы
            • Т — термоэлектрические приборы
            • У — измерительные установки
            • Ф — электронные приборы
            • Х — нормальные элементы
            • Ц — приборы выпрямительного типа
            • Ш — измерительные преобразователи
            • Щ — ?
            • Э — электромагнитные приборы

            Автор: Виктор

            Количество статей, опубликованных автором: 197.

            Ссылка на основную публикацию