Содержание
Операционный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.
Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.
Описание микросхемы LM358
Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.
Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.
Описание выводов
Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.
В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.
Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.
Аналоги микросхемы
Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.
Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.
К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон. Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.
Особенности включения
Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:
- неинвертирующий усилитель;
- преобразователь ток-напряжение;
- преобразователь напряжение-ток;
- дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
- дифференциальный усилитель с интегральной схемой регулирования коэффициента;
- схема контроля тока;
- преобразователь напряжение-частота.
Популярные схемы на lm358
Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.
Неинвертирующий усилитель и источник опорного напряжения
Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.
Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.
Генератор синусоидальных сигналов
Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина. При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.
Усилитель
Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.
Усилитель термопары на LM358
Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника. Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.
Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 о С с достаточно высокой точностью до 0,02 о С. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.
Простая схема регулятора тока
Схема включает кремниевый диод. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.
Схема состоит из нескольких компонентов:
- Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
- Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.
Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором, эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.
В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.
Зарядное устройство на LM 358
С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.
по входам + и — поставить делители напряжений состоящих из термосопротивления и резистора МЛТ
(по 100К четыре сопротивления). К минусу питания термосопротивления к плюсу МЛТ, т.е регистрировать разницу температур в гараже и на улице. Запитать схему от элементов 4,5 Вольта. Вопрос . Как будет уплывать точность настройки с понижением напряжения с 4,5 В. до 3,5В.Спасибо. Где почитать чтобы самому дошло.
Интересно, подумал тогда, либо перегрел его когда паял, что вряд ли, либо купил неисправный. Снова пошёл в магазин, купил ещё один, но решил проверить его перед тем как запаивать и о чудо, этот то же неисправный, но теперь его хоть можно вернуть продавцу, судя по всему, у него таких целая партия.
Но разбираться времени не было, пошёл в другой магазин и купил такой же ОУ, но уже за 4$, при покупке договорились, что если он не заработает то, принесу его обратно. Пришёл домой, проверил — работает, запаял — работает. Вывод из этого можно сделать следующий, после покупки детали, перед тем как её запаивать желательно проверить, а продавец, скорее всего, заказал партию этих ОУ с Китая и когда получил, не проверил, это и понятно когда у тебя целый магазин с радиодеталями проверять все устанешь.
К чему всё это писал, после этого поискал эти ОУ на али и когда нашёл их был приятно удивлён, на те деньги, которые потратил у себя в городе чтобы купить исправный ОУ(4$) в Китае можно было купить 5 штук, но они были в корпусе soic8, а имея негативный опыт, описанный выше, конечно же, хотелось их проверить когда они придут. Решить этот вопрос можно было несколькими способами, вытравить макетку, в которую можно было впаивать ОУ каждый раз, с другой стороны, чтобы не впаивать можно было просто прижимать ОУ к плате прищепкой, уже лучше, но есть вариант ещё интереснее, так как часто приходиться иметь дело с soic8, решил поискать ZIF адаптер soic8 – dip8, тогда можно будет собрать схему на breadboard, что значительно ускорит процесс.
В радиолюбительской практике нередко приходится применять ОУ, извлеченные из старых конструкций или печатных плат. Как показывает практика, совсем нелишней оказывается проверка и микросхем, приобретенных на радиорынке.
Первый метод тестирования основан на использовании ОУ как повторителя напряжения. Рассмотрим его на примере простейшего ОУ с внутренней коррекцией LM358N.
Подключение внешних выводов показано на рис. 1 а на рис.2 – схема тестирования. Для установки ОУ используется панелька DIP-8, но можно использовать и DIP-14/I6. Все детали подлаивают к панельке по возможности короткими выводами. Поскольку в одном корпусе LM358N содержится два ОУ, вначале проверяют первый (выводы 1, 2, 3). а затем второй (5, 6, 7). Конденсатор СЗ монтируют непосредственно на панельке. Далее собирают тест-схему рис.2, подают на нее питание. Резистор R2 используется в случае, если в применяемом БП отсутствует регулировка тока защиты.
Если же она есть, то R2 не устанавливают, но ток защиты БП включают на значение тока к.з. 10. 20 мА. К выходу ОУ подключают вольтметр постоянного напряжения PV с пределом 20 В. В ряде случаев элементы R1, CI, C2 можно не устанавливать. После включения переводим SA1 из одного положения в другое и наблюдаем за вольтметром. Если ОУ исправен, то в положении «1» переключателя вольтметр должен показывать почти напряжение питания, а в положении «О» – близкое к нулю.
Второй метод тестирования базируется на основе схемы включения ОУ как компаратора, т.е. сравнения двух напряжений (рис.3). К монтажу этой схемы предъявляются те же требования, что и предыдущей. С помощью R1 устанавливают напряжение в несколько волы, которое контролируют высокоомным вольтметром PV1. Примерно такое же напряжение необходимо установить и резистором R2, контролируемое также высокоомным PV2.
Напряжение на выходе ОУ контролируют вольтметром PV3, причем для исправного ОУ оно будет скачкообразно изменяться от практически питающего до почти нуля при небольшом перемещении движка R1 в ту или другую сторону. Номиналы резисторов R1, R2 можно выбирать любые в диапазоне от 10 кОм до 1 МОм, но они должны быть одинаковыми. Разумеется, совсем необязательно применять в рассмотренной схеме три вольтметра, это может быть один, подключаемый попеременно в три точки.
В заключение отметим, что вторая схема более универсальна, т.к. позволяет испытывать ОУ, не содержащие встроенной коррекции («противовозбудной»), без установки последней внешними элементами.