Выпрямитель для зарядного устройства

Содержание

Аккумуляторами в электротехнике приято называть химические источники тока, которые могут пополнять, восстанавливать израсходованную энергию за счет приложения внешнего электрического поля.

Устройства, которыми подают электроэнергию на пластины аккумулятора, называют зарядными: они приводят источник тока в рабочее состояние, заряжают его. Чтобы правильно эксплуатировать АКБ, необходимо представлять принципы их работы и зарядного устройства.

Как работает аккумулятор

Химический рециркулируемый источник тока при эксплуатации может:

1. питать подключенную нагрузку, например, лампочку, двигатель, мобильный телефон и другие приборы, расходуя свой запас электрической энергии;

2. потреблять подключенную к нему внешнюю электроэнергию, расходуя ее на восстановление резерва своей емкости.

В первом случае аккумулятор разряжается, а во втором — получает заряд. Существует много конструкций аккумуляторов, но, принципы работы у них общие. Разберем этот вопрос на примере никель-кадмиевых пластин, помещенных в раствор электролита.

Разряд аккумулятора

Одновременно работают две электрические цепочки:

1. внешняя, приложенная на выходные клеммы;

При разряде на лампочку во внешней приложенной схеме из проводов и нити накала протекает ток, образованный движением электронов в металлах, а во внутренней части — перемещаются анионы и катионы через электролит.

Окислы никеля с добавлением графита составляют основу положительно заряженной пластины, а губчатый кадмий используется на отрицательном электроде.

При разряде аккумулятора часть активного кислорода окислов никеля перемещается в электролит и движется на пластину с кадмием, где окисляет его, снижая общую емкость.

Заряд аккумулятора

Нагрузку с выходных клемм для зарядки чаще всего снимают, хотя на практике используется метод при подключенной нагрузке, как на аккумуляторе движущегося автомобиля или поставленного на зарядку мобильного телефона, по которому ведется разговор.

На клеммы аккумулятора подводится напряжение от постороннего источника более высокой мощности. Оно имеет вид постоянной или сглаженной, пульсирующей формы, превышает разность потенциалов между электродами, однополярно с ними направлено.

Эта энергия заставляет течь ток во внутренней цепочке аккумулятора в направлении, противоположном разряду, когда частицы активного кислорода «выдавливаются» из губчатого кадмия и через электролит поступают на свое прежнее место. За счет этого происходит восстановление израсходованной емкости.

Во время заряда и разряда изменяется химический состав пластин, а электролит служит передаточной средой для прохождения анионов и катионов. Интенсивность проходящего во внутренней цепи электрического тока влияет на скорость восстановления свойств пластин при заряде и быстроту разряда.

Ускоренное протекание процессов ведет к бурному выделению газов, излишнему нагреву, способному деформировать конструкцию пластин, нарушить их механическое состояние.

Слишком маленькие токи при зарядке значительно удлиняют время восстановления израсходованной емкости. При частом применении замедленного заряда повышается сульфатация пластин, снижается емкость. Поэтому приложенную к аккумулятору нагрузку и мощность зарядного устройства всегда учитывают для создания оптимального режима.

Принципы работы литий ионных аккумумляторов расмотрены здесь: Химические источники тока

Как работает зарядное устройство

Современный ассортимент аккумуляторов доволен обширен. Для каждой модели подбираются оптимальные технологии, которые могут не подойти, быть вредными для других. Производители электронного и электротехнического оборудования опытным путем исследуют условия работы химических источников тока и создают под них собственные изделия, отличающиеся внешним видом, конструкцией, выходными электрическими характеристиками.

Зарядные конструкции для мобильных электронных приборов

Габариты зарядных устройств для мобильных изделий разной мощности значительно отличаются друг от друга. Они создают специальные условия работы каждой модели.

Даже для однотипных аккумуляторов типоразмеров АА или ААА разной емкости рекомендуется использовать свое время зарядки, зависящее от емкости и характеристик источника тока. Его величины указываются в сопроводительной технической документации.

Определенная часть зарядных устройств и аккумуляторов для мобильников снабжаются автоматической защитой, отключающей питание по завершении процесса. Но, контроль за их работой все же следует осуществлять визуально.

Зарядные конструкции для автомобильных АКБ

Особенно точно соблюдать технологию зарядки следует при эксплуатации автомобильных аккумуляторов, призванных работать в сложных условиях. Например, зимой в мороз с их помощью необходимо раскрутить через промежуточный электродвигатель — стартер холодный ротор двигателя внутреннего сгорания с загустевшей смазкой.

Разряженные либо неправильно подготовленные аккумуляторы с этой задачей обычно не справляются.

Эмпирическими методами выявлена взаимосвязь тока зарядки для свинцовых кислотных и щелочных аккумуляторов. Принято считать оптимальным значением заряда (амперы) в 0,1 величину емкости (амперчасы) для первого вида и 0,25 — для второго.

Например, АКБ имеет емкость 25 ампер часов. Если он кислотный, то его необходимо заряжать током 0,1∙25=2,5 А, а для щелочного — 0,25∙25=6,25 А. Чтобы создавать такие условия потребуется использовать разные приборы или применить один универсальный с большим количеством функций.

Современное зарядное устройство для кислотных свинцовых батарей должно поддерживать ряд задач:

контролировать и стабилизировать ток заряда;

учитывать температуру электролита и не допускать его нагрева более 45 градусов прекращением питания.

Возможность проведения контрольно-тренировочного цикла для кислотной батареи автомобиля с помощью зарядного устройства является необходимой функцией, включающей три этапа:

1. полный заряд аккумулятора до набора максимальной емкости;

2. десятичасовой разряд током 9÷10% от номинальной емкости (эмпирическая зависимость);

3. повторный заряд разряженного аккумулятора.

При проведении КТЦ контролируют изменение плотности электролита и время завершения второго этапа. По его величине судят о степени износа пластин, длительности оставшегося ресурса.

Зарядные устройства для щелочных батарей можно применять менее сложных конструкций, ибо такие источники тока не так чувствительны к режимам недостаточной зарядки и перезаряда.

График оптимального заряда кислотно-щелочных аккумуляторов для автомобилей показывает зависимость набора емкости от формы изменения тока во внутренней цепи.

В начале технологического процесса зарядки рекомендуется поддерживать ток на максимально допустимом значении, а затем снижать его величину до минимальной для окончательного завершения физико-химических реакций, осуществляющих восстановление емкости.

Даже в этом случае требуется контролировать температуру электролита, вводить поправки на окружающую среду.

Полное завершение цикла зарядки свинцовых кислотных аккумуляторов контролируют по:

восстановлению напряжения на каждой банке 2,5÷2,6 вольта;

достижению максимальной плотности электролита, которая перестает изменяться;

образованию бурного газовыделения, когда электролит начинает «закипать»;

достижению емкости батареи, превышающей на 15÷20% величины, отданной при разряде.

Формы токов зарядных устройств для аккумуляторов

Условие зарядки аккумулятора состоит в том, что на его пластины должно подводиться напряжение, создающее ток во внутренней цепи определенного направления. Он может:

Читайте также:  Гидравлический домкрат опускается под нагрузкой

1. иметь постоянную величину;

2. или изменяться во времени по определенному закону.

В первом случае физико-химические процессы внутренней цепи идут неизменно, а во втором — по предлагаемым алгоритмам с цикличным нарастанием и затуханием, создающим колебательные воздействия на анионы и катионы. Последний вариант технологии применяется для борьбы с сульфатацией пластин.

Часть временны́х зависимостей тока заряда иллюстрируется графиками.

На нижней правой картинке видно явное отличие формы выходного тока зарядного устройства, использующего тиристорное управление для ограничения момента открытия полупериода синусоиды. За счет этого регулируется нагрузка на электрическую схему.

Естественно, что многочисленные современные зарядные устройства могут создавать и другие формы токов, не показанные на этой диаграмме.

Принципы создания схем для зарядных устройств

Для питания оборудования зарядных устройств обычно используется однофазная сеть 220 вольт. Это напряжение преобразуется в безопасное пониженное, которое прикладывается на входные клеммы аккумулятора через различные электронные и полупроводниковые детали.

Существует три схемы преобразования промышленного синусоидального напряжения в зарядных устройствах за счет:

1. использования электромеханических трансформаторов напряжения, работающих по принципу электромагнитной индукции;

2. применения электронных трансформаторов;

3. без использования трансформаторных устройств, основанных на делителях напряжения.

Технически возможно инверторное преобразование напряжения, которое стало широко применяться для инверторных сварочных аппаратов, частотных преобразователей, осуществляющих управление электродвигателями. Но, для зарядки аккумуляторов это довольно дорогое оборудование.

Схемы зарядных устройств с трансформаторным разделением

Электромагнитный принцип передачи электрической энергии из первичной обмотки 220 вольт во вторичную полностью обеспечивает отделение потенциалов питающей цепи от потребляемой, исключает попадание ее на аккумулятор и повреждение при возникновении неисправностей изоляции. Этот метод наиболее безопасен.

Схемы силовых частей устройств с трансформатором имеют много разных разработок. На картинке ниже показаны три принципа создания разных токов силовой части от зарядных устройств за счет использования:

1. диодного моста со сглаживающим пульсации конденсатором;

2. диодного моста без сглаживания пульсаций;

3. одиночного диода, срезающего отрицательную полуволну.

Каждая из этих схем может применяться самостоятельно, но, обычно одна из них является основой, базой для создания другой, более удобной для эксплуатации и управления по величине выходного тока.

Применение комплектов силовых транзисторов с цепочками управления в верхней части картинки на схеме позволяет уменьшать выходное напряжение на контактах вывода цепи зарядного устройства, что обеспечивает регулировку величин постоянных токов, пропускаемых через подключенные аккумуляторы.

Один из вариантов подобной конструкции зарядного устройства с регулированием тока показан на рисунке ниже.

Такие же подключения во второй схеме позволяют регулировать амплитуду пульсаций, ограничивать ее на разных этапах зарядки.

Эффективно работает эта же средняя схема при замене в диодном мосту двух противоположных диодов тиристорами, одинаково регулирующими силу тока в каждом чередующемся полупериоде. А устранение отрицательных полугармоник возложено на оставшиеся силовые диоды.

Замена единичного диода на нижней картинке полупроводниковым тиристором с отдельной электронной схемой для управляющего электрода, позволяет уменьшать импульсы тока за счет более позднего их открытия, что тоже используется для различных способов зарядки аккумуляторов.

Один из вариантов подобной реализации схемы показан на рисунке ниже.

Сборка ее своими руками не составляет особого труда. Она может быть выполнена самостоятельно из доступных деталей, позволяет заряжать аккумуляторы токами до 10 ампер.

Промышленный вариант схемы трансформаторного зарядного устройства «Электрон-6» выполнен на базе двух тиристоров КУ-202Н. Для регулирования циклами открытия полугармоник для каждого управляющего электрода создана своя схема из нескольких транзисторов.

Среди автолюбителей пользуются популярностью устройства, позволяющие не только заряжать аккумуляторы, но еще и использовать энергию питающей сети 220 вольт для параллельного подключения ее к запуску двигателя автомобиля. Их называют пусковыми или пускозарядными. Они обладают еще более сложной электронной и силовой схемой.

Схемы с электронным трансформатором

Такие устройства выпускаются производителями для питания галогенных ламп напряжением 24 или 12 вольт. Они стоят относительно дёшево. Отдельные энтузиасты пытаются подключить их для зарядки маломощных аккумуляторов. Однако, эта технология широко не отработана, имеет существенные недостатки.

Схемы зарядных устройств без трансформаторного разделения

При последовательном подключении нескольких нагрузок к источнику тока общее напряжение входа делится по составным участкам. За счет этого способа работают делители, создающие понижение напряжения до определённой величины на рабочем элементе.

На этом принципе создаются многочисленные зарядные устройства с резистивно-емкостными сопротивлениями для маломощных аккумуляторов. Благодаря маленьким габаритам составных деталей их встраивают непосредственно внутрь фонарика.

Внутренняя электрическая схема полностью помещена в заводской изолированный корпус, исключающий контакт человека с потенциалом сети при зарядке.

Этот же принцип пытаются реализовать многочисленные экспериментаторы для зарядки автомобильных аккумуляторов, предлагая схему подключения от бытовой сети через конденсаторную сборку или лампочку накаливания мощностью в 150 ватт и силовой диод, пропускающий импульсы тока одной полярности.

Подобные конструкции можно встретить на сайтах мастеров «сделай сам», расхваливающих простоту схемы, дешевизну деталей, возможность восстановления емкости разряженного аккумулятора.

Но, они молчат о том, что:

открытая проводка 220 представляет опасность для жизни человека;

нить накала лампы под напряжением нагревается, меняет свое сопротивление по закону, неблагоприятному для прохождения оптимальных токов через аккумулятор.

При включении под нагрузку через холодную нить и всю последовательно подключенную цепочку проходят очень большие токи. Кроме того, завершать зарядку следует маленькими токами, что тоже не выполняется. Поэтому аккумулятор, подвергшийся нескольким сериям подобных циклов, быстро теряет свою емкость и работоспособность.

Наш совет: не пользуйтесь этим методом!

Зарядные устройства создаются для работы с определёнными типами аккумуляторов, учитывают их характеристики и условия восстановления емкости. При использовании универсальных, многофункциональных приборов следует выбирать тот режим заряда, который оптимально подходит конкретному аккумулятору.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Читайте также:  Аккумулятор для шуруповерта своими руками 18650

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

Схема зарядного устройства для автомобильного аккумулятора

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

При эксплуатации автомобилей многие из нас сталкиваются с необходимостью подзарядки аккумулятора, что позволяет гарантировать беспроблемность использования автомобиля в холодное время года. Действительно, с наступлением холодов АКБ может плохо держать заряд, что и приводит к определенным сложностям в эксплуатации автомобиля. В этом случае необходимо будет выполнить подзарядку аккумулятора, что можно сделать при помощи как специальных покупных устройств, так и изготовленных самостоятельно выпрямителей. Такие самодельные зарядники имеют довольно простую конструкцию, что позволяет выполнить их каждому автовладельцу.

Причины проблем с аккумулятором

Автомобильные аккумуляторы — это довольно простые устройства, которые состоят из заряженных свинцовых пластин, погруженных в электролит, что и позволяет батарее накапливать и отдавать напряжение при использовании автомобиля. В отдельных случаях могут отмечаться определенные сложности в работе АКБ, которая может терять заряд по следующим причинам:

  • Использование устаревших, исчерпавших свой ресурс батарей.
  • Частые и нерегулярные поездки не позволяют зарядиться АКБ.
  • Повышенная нагрузка на батарею, что обусловлено использованием различного электрооборудования в автомобиле.
  • Неисправность генератора.
  • Эксплуатация автомобиля в условиях экстремально низких температур.

Любая из перечисленных выше причин может привести к полной разрядке батареи, в итоге аккумулятор не сможет провернуть стартер, а завести двигатель будет невозможно. В таком случае необходимо будет снять аккумулятор с автомобиля и зарядить его в домашних условиях при помощи специального устройства.

Как происходит зарядка

При использовании на автомобиле качественного аккумулятора и отсутствия каких-либо проблем с генератором АКБ будет набирать во время движения необходимый заряд, поэтому какого-либо дополнительного обслуживания и подзарядки в данном случае не требуется. Однако зимой на АКБ приходится повышенная нагрузка, что обусловлено невозможностью прокрутить стартер на замерзшем автомобиле. Поэтому достаточно нескольких неудачных попыток завести двигатель, чтобы батарея полностью потеряла заряд, и в последующем завести машину будет уже невозможно.

Зарядка автомобильного аккумулятора будет необходима в тех случаях, когда показатель напряжения на клеммах падает ниже отметки 11,2 Вольта. В зависимости от используемых выпрямителей такая зарядка аккумулятора может выполняться импульсным или постоянным током. При этом показатель мощности работы зарядных устройств выбирается в зависимости от емкости батареи. Например, если требуется подзарядить аккумулятор емкостью в 60 Ампер/часов, то показатель тока заряда устанавливают на 6 Ампер.

Непосредственно процедура подзарядки аккумулятора не представляет какой-либо особой сложности. К аккумулятору подключают клеммы от выпрямителя и подают небольшое напряжение. За 24 или 48 часов батарея наберёт необходимую ей ёмкость и в последующем будет с легкостью прокручивать стартер, заводя двигатель автомобиля. Такое устройство отличается простотой конструкции, поэтому изготовить импульсное зарядное устройство для автомобиля своими руками не составит какого-либо труда.

Читайте также:  Художественное травление рисунка на ноже

При подзарядке аккумулятора может возникать такое неприятное явление, как сульфатизация свинцовых пластин. Появляется подобное при частичном наборе ёмкости и высоких показателях рабочего тока. В изготовленных заводским способом устройствах, где часть параметров контролируется автоматикой, при достижении определенной емкости ток автоматически уменьшается, что позволяет избежать повреждения свинцовых пластин. Если же выполняется подзарядка аккумулятора при помощи самостоятельно изготовленных выпрямителей, то необходимо вручную снижать показатель рабочего тока, что и позволит правильно выполнить всю работу.

Необходимо следить за тем, чтобы общая мощность заряда не превышала у батареи 13,2 Вольта, в противном случае может отмечаться закипание электролита, что приводит в последующем к быстрому разрушению пластин.

Схемы простейших зарядных устройств

Любое устройство выпрямитель для аккумулятора будет состоять из следующих компонентов:

  • Стабилизатора тока.
  • Блока питания.
  • Регулятора силы заряда.
  • Индикатора напряжения.
  • Опционально: контроль уровня заряда и автоматического отключения.

Конструкция таких выпрямителей не представляет особой сложности, поэтому нужный вам прибор можно с легкостью изготовить из подручных материалов, даже если вы обладаете начальным опытом в радиоэлектронике. Всё что вам потребуется — это простейшие схемы зарядного устройства для автомобильного аккумулятора, а также начальные навыки работы с паяльником.

Изготавливаем зарядник для АКБ

Выполнить такой выпрямитель не составит труда. Стоимость используемых запчастей минимальна, поэтому вы сможете существенно сэкономить в сравнении с приобретением уже готового заводского прибора.

Для этой работы вам потребуется:

  • Паяльник и комплект для пайки.
  • Несколько прочных проводов.
  • Диодная сборка и обмоточный трансформатор.
  • Проволочный разрядный реостат.
  • Гасящий конденсатор.
  • Конденсаторная батарея.
  • Ареометр для проверки уровня заряда.

Делаем блок питания

Блок питания можно с легкостью выполнить из диодной сборки и двух обмоточных трансформаторов. Трансформаторы подключаются к диодному и тиристорному мосту, который позволяет снизить уровень напряжения до нужных величин. Регулировка тока будет выполняться нами при помощи реостата. Помните о том, что керамические сердечники или переменные резисторы такой нагрузки выдержать не смогут, поэтому использовать их в выпрямителях для аккумуляторов не следует.

Упростить изготовление зарядника можно путем использования блоков питания от старых компьютеров. Такие блоки выдают необходимое стабильное напряжение, они полностью безопасны в использовании и отличаются простотой подключения к тиристорному блоку, который будет выпрямлять напряжение. Вам необходимо лишь помнить о том, что такие блоки питания рассчитаны на показатель тока не более 2 Ампер, поэтому можно будет выполнить лишь маломощный зарядник.

Стабилизатор напряжения

Использование проволочного реостата позволяет не только оптимальным образом уменьшить показатель выходного напряжения, но и решает проблему с большим выделением тепла от избыточной мощности. К сожалению, КПД таких приборов не слишком высок, соответственно наш реостат будет являться слабым звеном, которое часто ломается и требует замены. Впрочем, на 5—10 подзарядок проволочного реостата хватит, а в последующем буквально за копейки можно приобрести аналогичные детали и выполнить ремонт вышедшего из строя выпрямителя.

Единственный нюанс использования такого проволочного реостата состоит в том, что зарядка АКБ выполняется на меньшем токе, а это приводит к некоторому увеличению длительности такой работы.

Соответственно, если покупными устройствами зарядить аккумулятор можно буквально за сутки, то при помощи самодельного выпрямителя такая работа может затянуться на полтора-два дня.

Автоматический контроль заряда

Именно правильный контроль заряда и изменение силы мощности тока является одним из условий набора емкости батареей, которая в последующем с легкостью заводит двигатель автомобиля. Необходимо подключить в схему автомобильного зарядного устройства вольтметр или же специальные устройства для автоматического контроля заряда. Выполняется такой диодный мост, отвечающий за контроль заряда, при помощи переменных резисторов R 4, которые подключаются к реле К2, что и позволяет отключать нагрузку при достижении определенной емкости батареи.

Дополнительно выпрямитель можно оснастить конденсаторной батареей, которая уменьшает или добавляет ёмкость и позволяет существенно ускорить зарядку АКБ. Наличие такой конденсаторной батареи позволяет с легкостью регулировать выходной ток, а само устройство будет отличаться универсальностью использования, что позволяет применять его для работы с аккумуляторами различной емкости. Использование такой конденсаторной батареи также позволяет решить проблемы с паразитным нагревом, который может доставлять массу хлопот при работе выпрямителя на максимальных показателях мощности тока.

При желании в сети интернет можно найти десятки различных схем исполнения блоков питания и всего зарядного устройства для автомобильных аккумуляторов, которые будут различаться используемыми компонентами и принципом работы.

Необходимо лишь выполнять все такие выпрямители в точном соответствии с имеющейся схемой зарядки аккумулятора, что позволит как обеспечить безопасность использования электроприборов, так и предупредить выход из строя аккумулятора по причине подачи на него тока большой мощности.

Как сделать импульсный прибор

Популярностью сегодня пользуются импульсные автоматические зарядные устройства для аккумулятора 12 В, которые позволяют работать на высоких показателях тока, минимально греются во время работы и обладают высоким КПД. Однако их недостаток — это сложность конструкции, поэтому многим автовладельцам, которые не имеют соответствующего опыта в радиоэлектронике, сложно собрать такой импульсный выпрямитель.

Если же вы умеете читать схемы и знакомы с устройством ШИМ-генератора, то собрать такой универсальный в использовании импульсный трансформаторный выпрямитель не составит труда. В последующем работать с подобным устройством чрезвычайно просто, а сам зарядник может использоваться для работы, как с аккумуляторами от легковых автомобилей, так и с мощными АКБ от грузовиков и другой спецтехники.

Рекомендации по подзарядке

  • Выполняя подзарядку АКБ мощным выпрямителем, следует постоянно контролировать напряжение, что позволит предупредить сульфатизацию пластин и последующий выход из строя батареи.
  • При транспортировке аккумулятора запрещается переворачивать его и ставить набок. Батарея должна всегда сохранять свое горизонтальное положение.
  • При возможности активируйте авторежим подзарядки, когда электроника полностью регулирует ток, понижая его при увеличении емкости АКБ.
  • Можно с легкостью использовать старый советский зарядник, который выдает качественное напряжение, при этом благодаря наличию вольтметра существенно упрощается работа с такими приборами.

Ссылка на основную публикацию