В каких единицах измеряется твердость металла

Содержание

Твёрдость — свойство материала сопротивляться внедрению более твёрдого тела — индентора.

Метод определения восстановленной твёрдости.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объёму отпечатка. Различают поверхностную, проекционную и объемную твёрдость:

  • поверхностная твёрдость — отношение нагрузки к площади поверхности отпечатка;
  • проекционная твёрдость — отношение нагрузки к площади проекции отпечатка;
  • объёмная твёрдость — отношение нагрузки к объёму отпечатка.

Твёрдость измеряют в трёх диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2 Н до 30 кН. Микродиапазон (см. микротвёрдость) регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2 мкм. Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм [1] . Часто твёрдость в нанодиапазоне называют нанотвердостью (nanohardness). Величина нанотвердости может значительно отличаться от микротвёрдости для одного и того же материала. [2] [3] .

Измеряемая твёрдость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта, в англоязычной литературе — indentation size effect. Характер зависимости твердости от нагрузки определяется формой индентора:

  • для сферического индентора — с увеличением нагрузки твёрдость увеличивается — обратный размерный эффект (reverse indentation size effect);
  • для индентора в виде пирамиды Виккерса или Берковича — с увеличением нагрузки твёрдость уменьшается — прямой или просто размерный эффект (indentation size effect);
  • для сфероконического индентора (типа конуса для твердомера Роквелла) — с увеличением нагрузки твёрдость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для конической части индентора).

Содержание

Методы измерения твёрдости [ править | править код ]

Методы определения твёрдости по способу приложения нагрузки делятся на: 1) статические и 2) динамические (ударные).

Для измерения твёрдости существуют несколько шкал (методов измерения):

  • Метод Бринелля — твёрдость определяется по диаметру отпечатка, оставляемому твердосплавным шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга (твёрдость по Мейеру)); размерность единиц твердости по Бринеллю МПа (кгс/мм²). Твёрдость, определённая по этому методу, обозначается HBW, где H — hardness (твёрдость, англ.), B — Бринелль, W — материал индентора, затем указывают диаметр индентора, нагрузку и время выдержки. Стальные шарики в качестве инденторов для метода Бринелля уже не используются.
  • Метод Роквелла — твёрдость определяется по относительной глубине вдавливания стального, твердосплавного шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HRA, HRB, HRC и т.д.; твёрдость вычисляется по формуле HR = 100 (130) − h/e, где h — глубина относительного вдавливания наконечника после снятия основной нагрузки, а e — коэффициент, равный 0,002 мм для метода Роквелла и 0,001 мм для супер Роквелла. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B — 130 единиц. Всего существует 54 шкалы измерения твердости по Роквеллу.
  • Метод Виккерса — твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади поверхности отпечатка (причём площадь поверхности отпечатка берётся как площадь части геометрически правильной пирамиды, а не как площадь поверхности фактического отпечатка); размерность единиц твёрдости по Виккерсу кгс/мм². Твёрдость, определённая по этому методу, обозначается HV с обязательным указанием нагрузки и времени выдержки.
  • Методы Шора:
  • Твёрдость по Шору (Метод вдавливания) — твёрдость определяется по глубине проникновения в материал специальной закалённой стальной иглы (индентора) под действием калиброванной пружины [4] . В данном методе измерительный прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твёрдых). Твёрдость, определённая по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода.
  • Дюрометры и шкалы Аскер — по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами.
  • Твёрдость по Шору (Метод отскока) — метод определения твёрдости очень твёрдых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (основная часть склероскопа — измерительного прибора для данного метода), падающий с определённой высоты [5] . Твёрдость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Основные шкалы C и D. Обозначается HSx, где H — Hardness, S — Shore и x — латинская буква, обозначающая тип использованной при измерении шкалы [6][7] .

Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал, это — не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

  • Метод Кузнецова — Герберта — Ребиндера — твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;
  • Метод Польди (двойного отпечатка шарика) — твёрдость оценивается в сравнении с твёрдостью эталона, испытание производится путём ударного вдавливания стального шарика одновременно в образец и эталон (см. иллюстрацию);
  • Шкала Мооса — определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.
  • Метод Бухгольца — метод определения твердости при помощи прибора «Бухгольца». Предназначен для испытания на твёрдость (твёрдость по Бухгольцу) полимерных лакокрасочных покрытий при вдавливании индентора «Бухгольца». Метод регламентируют стандарты ISO 2815, DIN 53153, ГОСТ 22233 [8][9] .
Читайте также:  Как проверить сетевой фильтр

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости.

Для инструментального определения твёрдости используются приборы, именуемые твёрдомерами. Методы определения твёрдости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближённые таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчётным методом перейти от одного способа определения твёрдости к другому.

Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В СНГ стандартизированы не все шкалы твёрдости.

Для того чтобы детали и механизмы служили длительно и надежно, материалы, из которых они изготовлены, должны соответствовать необходимым условиям работы. Именно поэтому важно контролировать допустимые значения их основных механических показателей. К механическим свойствам относятся твердость, прочность, ударная вязкость, пластичность. Твердость металлов — первичная конструкционная характеристика.

Понятие

Твердость металлов и сплавов — это свойство материала создавать сопротивление при проникновении в его поверхностные слои иного тела, которое не деформируется и не разрушается при сопутствующих нагрузках (индентора). Определяют с целью:

  • получения информации о допустимых конструкционных особенностях и о возможностях эксплуатации;
  • анализа состояния под действием времени;
  • контроля результатов температурной обработки.

От этого показателя частично зависят прочность и устойчивость поверхности к старению. Исследуют как исходный материал, так и уже готовые детали.

Варианты исследования

Показателем является величина, которая называется числом твердости. Существуют различные методы измерения твердости металлов. Наиболее точные исследования заключаются в использовании различных видов вычисления, инденторов и соответствующих твердомеров:

  1. Бринелля: суть работы аппарата – вдавливание шарика в исследуемый металл или сплав, вычисление диаметра отпечатка и последующее математическое вычисление механического параметра.
  2. Роквелла: используются шарик или алмазный конусный наконечник. Значение отображается на шкале или определяется расчётно.
  3. Виккерса: наиболее точное измерение твердости металла с применением алмазного пирамидального наконечника.

Для определения параметрических соответствий между показателями разных способов измерения для одного и того же материала существуют специальные формулы и таблицы.

Факторы, определяющие вариант измерения

В лабораторных условиях, при наличии необходимого ассортимента оборудования, выбор способа исследования осуществляется в зависимости от определенных характеристик заготовки.

  1. Ориентировочное значение механического параметра. Для конструкционных сталей и материалов с небольшой твердостью до 450-650 НВ применяют метод Бринелля; для инструментальных, легированных сталей и других сплавов – Роквелла; для твердосплавов – Виккерса.
  2. Размеры испытуемого образца. Особо маленькие и тонкие детали обследуются с помощью твердомера Виккерса.
  3. Толщина металла в месте замера, в частности, цементированного или азотированного слоя.

Все требования и соответствия задокументированы ГОСТом.

Особенности методики Бринелля

Испытания на твердость металлов и сплавов с помощью твердомера Бринелля проводятся со следующими особенностями:

  1. Индентор – шарик из легированной стали или из карбидо-вольфрамового сплава диаметром 1, 2, 2,5, 5 или 10 мм (гост 3722-81).
  2. Продолжительность статического вдавливания: для чугуна и стали – 10-15 с., для цветных сплавов – 30, также возможна длительность в 60 с., а в некоторых случаях – 120 и 180 с.
  3. Граничное значение механического параметра: 450 НВ при измерении стальным шариком; 650 НВ при использовании твердосплава.
  4. Возможные нагрузки. С помощью входящих в комплект грузов корректируется фактическая сила деформации на испытуемый образец. Их минимальные допустимые значения: 153,2, 187,5, 250 Н; максимальные – 9807, 14710, 29420 Н (гост 23677-79).

С помощью формул, в зависимости от диаметра выбранного шарика и от испытуемого материала, можно вычислить соответствующее допустимое усилие вдавливания.

Математическое вычисление нагрузки

Сталь, сплавы никеля и титана

Медь и медные сплавы

5D 2 , 10D 2 , 30D 2

Легкие металлы и сплавы

2,5D 2 , 5D 2 , 10D 2 , 15D 2

400HB10/1500/20, где 400HB – твердость металла по Бринеллю; 10 – диаметр шарика, 10 мм; 1500 – статическая нагрузка, 1500 кгс; 20 – период осуществления вдавливания, 20 с.

Для установления точных цифр рационально исследовать один и тот же образец в нескольких местах, а общий результат определять путем нахождения среднего значения из полученных.

Определение твердости по методу Бринелля

Процесс исследования протекает в следующей последовательности:

  1. Проверка детали на соответствие требованиям (ГОСТ 9012-59, гост 2789).
  2. Проверка исправности аппарата.
  3. Выбор необходимого шарика, определение возможного усилия, установка грузов для его формирования, периода вдавливания.
  4. Запуск твердомера и деформация образца.
  5. Измерение диаметра углубления.
  6. Эмпирическое вычисление.
Читайте также:  Рейтинг мультиметров для дома

где F – нагрузка, кгс или Н; A – площадь отпечатка, мм 2 .

где D – диаметр шарика, мм; h – глубина отпечатка, мм.

Твердость металлов, измеренная этим способом, имеет эмпирическую связь с вычислением параметров прочности. Метод точен, особенно для мягких сплавов. Является основополагающим в системах определения значений этого механического свойства.

Особенности методики Роквелла

Этот способ измерения был изобретен в 20-х годах XX века, более автоматизирован, чем предыдущий. Применяется для более твердых материалов. Основные его характеристики (ГОСТ 9013-59; гост 23677-79):

  1. Наличие первичной нагрузки в 10 кгс.
  2. Период выдержки: 10-60 с.
  3. Граничные значения возможных показателей: HRA: 20-88; HRB: 20-100; HRC: 20-70.
  4. Число визуализируется на циферблате твердомера, также может рассчитываться арифметически.
  5. Шкалы и инденторы. Известно 11 различных шкал в зависимости от типа индентора и предельно-допустимой статической нагрузки. Наиболее распространённые в использовании: А, В и С.

А: алмазный конусный наконечник, угол при вершине 120˚, общая допустимая сила статического влияния – 60 кгс, HRA; исследуются тонкие изделия, в основном прокат.

С: также алмазный конус, рассчитанный на максимальное усилие 150 кгс, HRC, применим для твердых и закаленных материалов.

В: шарик размером 1,588 мм, изготовленный из закаленной стали или из твердого карбидо-вольфрамового сплава, нагрузка – 100 кгс, HRB, используется для оценки твердости отожжённых изделий.

Шарикообразный наконечник (1,588 мм) применим для шкал Роквелла B, F, G. Также существуют шкалы E, H, K, для которых используется шарик диаметром 3,175 мм (ГОСТ 9013-59).

Количество проб, проделанных с помощью твердомера Роквелла на одной площади, ограничивается размером детали. Допускается повторная проба на расстоянии 3-4 диаметра от предыдущего места деформации. Толщина испытуемого изделия также регламентируется. Она должна быть не меньше увеличенной в 10 раз глубины внедрения наконечника.

50HRC – твердость металла по Роквеллу, измерена с помощью алмазного наконечника, ее число равно 50.

План исследования по методу Роквелла

Измерение твердости металла более упрощено, нежели для способа Бринелля.

  1. Оценка размеров и характеристик поверхности детали.
  2. Проверка исправности аппарата.
  3. Определение типа наконечника и допустимой нагрузки.
  4. Установка образца.
  5. Осуществление первичного усилия на материал, величиной в 10 кгс.
  6. Осуществление полного соответствующего усилия.
  7. Чтение полученного числа на шкале циферблата.

Также возможен математический расчет с целью точного определения механического параметра.

При условии использования алмазного конуса с нагрузкой 60 или 150 кгс:

при совершении испытания с помощью шарика под усилием 100 кгс:

где h – глубина внедрения индентора при первичном усилии 10 кгс; H – глубина внедрения индентора при полной нагрузке; 0,002 – коэффициент, регламентирующий величину перемещения наконечника при изменении числа твердости на 1 единицу.

Метод Роквелла является простым, но недостаточно точным. В то же время он позволяет измерять показатели механического свойства для твердых металлов и сплавов.

Характеристики методики Виккерса

Определение твердости металлов по данному способу наиболее просто и точно. Работа твердомера основана на вдавливании в образец алмазного пирамидального наконечника.

  1. Индентор: алмазная пирамида с углом при вершине 136°.
  2. Предельно допустимая нагрузка: для легированного чугуна и стали — 5-100 кгс; для медных сплавов — 2,5-50 кгс; для алюминия и сплавов на его основе — 1-100 кгс.
  3. Период выдержки статической нагрузки: от 10 до 15 с.
  4. Испытуемые материалы: сталь и цветные металлы с твердостью более 450-500 НВ, в том числе изделия после химико-термической обработки.

где 700HV – число твердости по Виккерсу; 20 – нагрузка, 20 кгс; 15 – период статического усилия, 15 с.

Последовательность исследования Виккерса

Порядок действий предельно упрощен.

  1. Проверка образца и аппаратуры. Особое внимание уделяется поверхности детали.
  2. Выбор допустимого усилия.
  3. Установка испытуемого материала.
  4. Запуск твердомера в работу.
  5. Чтение результата на циферблате.

Математический расчет по этому способу выглядит следующим образом:

где F – нагрузка, кгс; d – среднее значение длин диагоналей отпечатка, мм.

Он позволяет измерять высокую твердость металлов, тонких и небольших деталей, при этом предоставляя высокую точность результата.

Способы перехода между шкалами

Определив диаметр отпечатка с помощью специального оборудования, можно с помощью таблиц определить твердость. Таблица твердости металлов – проверенный помощник в вычислении данного механического параметра. Так, если известно значение по Бринеллю, можно легко определить соответствующее число Виккерса или Роквелла.

Интервал твердости по Бринелю

Минимальная толщина образца

Соотношение между нагрузкой и диаметром шарика

Диаметр шарика, мм

Выдержка под нагрузкой, с

о или стального закаленного шарика диаметром 1,588 мм. Конус или шарик вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок: предварительной Р0 и основной Р1. Общая нагрузка Р будет равна: Р= Р0 + Р1.

При испытании сначала прикладывают предварительную нагрузку Р0=100 Н, затем общую нагрузку Р, равную: при вдавливании шарика (шкала В) 1000 Н; при вдавливании алмазного конуса (шкала С) 1500 Н; при вдавливании алмазного конуса (шкала А) 600 Н (рис. 2).

Рис.2. Разновидность глубины проникновения наконечника под действием двух нагрузок

Твердость по Роквеллу обозначается цифрами и буквами HR с указанием шкалы твердости (А,В,С).

Читайте также:  Как почистить вытяжной вентилятор в ванной

Число твердости по Роквеллу определяют по формуле

где h0 — глубина внедрения наконечника под действием силы Р0;

h — глубина внедрения наконечника под действием общей

к — постоянная величина, для шарика 0,26; для конуса 0,2;

с — цена деления циферблата индикатора.

При измерении твердости нагрузка должна действовать строго перпендикулярно к поверхности образца. Нагрузки следует прилагать плавно.

Твердость измеряют на приборе, представленном на рис. 3.

Рис.3. Схема прибора для измерения твердости по Роквеллу

Стол 1 служит для установки на нем испытуемого образца 3. Вращая по часовой стрелке маховик 2, подводят образец до соприкосновения с наконечником 4. При дальнейшем вращении маховика наконечник начинает внедряться в образец, а на шкале индикатора наблюдают за поворотом малой стрелки. Предварительное нагружение производят до тех пор, пока малая стрелка индикатора не совпадет с красной точкой.

Когда образец получает предварительную нагрузку 100 Н (10 кГс), большая стрелка индикатора принимает вертикальное положение (или близкое к нему). Точную установку шкалы индикатора на ноль производят при помощи барабана 6. Затем нажимают на клавишу 7, при этом обеспечивается действие основной нагрузки и создается общая нагрузка (предварительная + основная).

При таком нагружении большая стрелка перемещается по циферблату индикатора против часовой стрелки. Время приложения общей нагрузки 5-7 с. Затем основная нагрузка снимается автоматически и остается только предварительная. Большая стрелка индикатора перемещается по часовой стрелке. Цифра, которую укажет на циферблате индикатора большая стрелка, представляет число твердости по Роквеллу. Далее поворачивают маховик 2 против часовой стрелки, опускают столик и снимают образец.

Твердость на приборе Роквелла можно измерять:

1) алмазным конусом с общей нагрузкой 1500 Н (150 кГс). В этом случае значение твердости определяют по черной шкале “С” индикатора и обозначают НRC. Эта шкала применяется при испытании закаленных сталей (до HRC 67);

2) алмазным конусом с общей нагрузкой 600 Н (60 кГс). В этом случае значения твердости также определяются по черной шкале “С”, но обозначают HRA. Числа HRA можно перевести на числа HRC по формуле: HRC = 2 HRA — 104. Эта шкала применяется для испытания сверхтвердых сплавов (например на основе карбидов вольфрама, обладающих твердостью HRC>68), тонкого листового материала и для измерения твердости тонких поверхностных слоев (0,3-0,5 мм);

3) стальным шариком с общей нагрузкой 1000 Н (100 кГс).

В этом случае значения твердости определяют по красной шкале “В” и обозначают HRB. Шкала В служит для испытания металлов средней твердости и для испытания изделия толщиной от 0,8 до 2 мм.

К достоинствам метода Роквелла следует отнести высокую производительность, простоту обслуживания, точность измерения и сохранение качественной поверхности после испытаний.

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЯ

(ТВЕРДОСТЬ ПО ВИККЕРСУ)

Этот способ используется для измерения твердости черных и цветных металлов и сплавов.

Твердость по методу Виккерса определяют путем вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды с углом при вершине 136 0 под нагрузкой 50, 100, 200, 300, 500, 1000 Н. По диагоналям h1 и h2 отпечатка, пирамиды и углу при вершине пирамиды определяют площадь поверхности отпечатка и рассчитывают по формуле:

где Р — нагрузка на пирамиду, Н;

 — угол между противоположными гранями пирамиды (136 0 );

d – среднеарифметические значения длин обеих диагоналей отпечатка после снятия нагрузки, мм.

Испытания проводят на приборе (рис. 4), имеющем неподвижную станину, в нижней части которой установлен столик 1, перемещающийся по вертикали вращением маховика 2. Образец 3 устанавливают на столик испытуемой поверхностью кверху и поднимают столик почти до соприкосновения образца с алмазной пирамидой 4. Нажатием педали пускового рычага 5 приводят в действие нагружающий механизм, который через рычаг передает давление грузов 6. Продолжительность нагружения при испытании составляет от 10 до 60 с, что регистрируется сигнальной лампочкой на приборе. После снятия нагрузки столик опускают и подводят микроскоп 7, с помощью которого определяют длину диагонали отпечатка.

Рис.4. Схема прибора для измерения твердости по Виккерсу

В окуляре микроскопа (рис. 5,б) имеются подвижная шкала и три штриха — два основных 1 и 2, и один дополнительный 3 (рис. 5,б). Вращением винта 1 (рис. 5,а) подводят штрих 1 к левому углу отпечатка (рис. 5,б). Вращением микрометрического винта 2 (рис. 5,а) подводят штрих 2 к правому углу отпечатка. Полученную величину диагонали отпечатка записать в протокол испытания.

Рис.5. Схемы: а). микрометрического винта; б). определения величины отпечатка

Измерять необходимо обе диагонали отпечатка и принимать среднюю величину измерений. Полученный результат перевести в значение твердости HV, пользуясь таблицами. Возможность применения малых нагрузок 50, 100 Н позволяет определить твердость деталей малой толщины и тонких поверхностных слоев, например, цементированных, азотированных и других.

Числа твердости по Виккерсу и по Бринеллю для материалов твердостью до НВ 4500 практически совпадают. Вместе с тем, измерения пирамидой дают более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом. Алмазная пирамида имеет большой угол в вершине (136 0 ) и диагональ его отпечатка примерно в 7 раз больше глубины отпечатка, что повышает точность измерения даже при проникновении пирамиды на небольшую глубину.

Ссылка на основную публикацию