Удельное сопротивление материалов таблица

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме – описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая.

Удельное сопротивление зависит от концентрации в проводнике свободных электронов и от расстояния между ионами кристаллической решетки, иначе говоря, от материала проводника.

Размерность удельного электросопротивления в сист. СИ (международная система единиц, англ. – International System of Units) –
Ом·м [Ом*м^2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус. – микроом-метр, англ. – microhm-meter) = 1*10^-6 Ом*м
1 мкОм·м = 1 Ом·мм2/м

При этом, удельное сопротивление однородного куска проводника длиной 1 метр и площадью токоведущего сечения 1 квадратный миллиметр – равно 1 Ом·мм2/м, если его сополтивление равно 1 Ом.
Например, величина удельного сопротивления электротехнической меди, примерно, составляет 1,72*10^-8 Ом·м = 0.0172 мкОм·м (определяется при температуре 20 градусов по Цельсию).

В зависимости от удельного сопротивления все вещества делятся на проводники, диэлектрики и полупроводники. Диэлектрики (изоляторы, например – фарфор) имеют очень высокие значения удельного электрического сопротивления, превышающие 10^12 Ом·м, а проводники (к примеру – серебро, медь) – меньше 10^-2 Ом·м ( Соотношения:

1 Ом·мм2/м = 1 мкОм·м ( 1*10^-6 Ом*м )
1 Ом·см = 0.01 Ом·м
1 Ом·м = 100 Ом·см (ом-сантиметр, англ. Ohm-centimeter)

Электрическая проводимость – это величина, обратная электрическому сопротивлению. В СИ единицей электрической проводимости является Сименс (обозначается – См, анг. – S). Например, медь имеет эл.проводность, приблизительно, равную 58 100 000 См/м ( 1 / 58100000

0,0172 х 10-6 Ом.м), измеряемую при температуре 20 °C

Формула для расчёта электрического сопротивления при постоянном токе

где:
R – электросопротивление провода;
p – удельное сопротивление: p [Ом·мм2/м] = (R * S) / L [ Om * mm^2 / m ]
L – длина, м;
S – поперечное сечение: квадратный метр или миллиметр (м2 или мм2). S = 3.14 * (радиус)^2

Если удельное эл.сопротивление – в Ом·мм2/м, то S (сечение) – должно быть в мм2, L (длина) – в метрах.
Если в Ом·см (Ом-сантиметр, сокращением, из Ом*см^2 / см ), то S в см2, L – в сантиметрах.
Если уд.сопр – в Om·m (Ом-метр, из Ом*м^2 / м ), то S в м2, L – в метрах.

1 Ом·мм2/м = 1 мкОм·м (производная дольная единица удельного электрического сопротивления в системе СИ, применяемая, на практике, в технических расчётах – миллионная часть Ом•м)

Для электрика и опытного радиолюбителя, способность на глазок оценить сечение электрического провода, с учётом слоя изоляции – это как абсолютный слух у музыканта, слёту определяющего высоту тона услышанных звуков и записывающего их в виде нотных знаков и ключей регистра.

Пример, в качестве образца по соотношению величин.

Удельное электросопротивление чистой электротехнической меди, измеренное при температуре 20 °C:

0,0172 мкОм (микроом-метр, 10^-6 Ом•м)

1.72*10^-2 Ом*мм^2/м (фактическое электр-е сопротивление медного проводника, длиной 1 метр и сечением 1 мм2)

1.72*10^-6 Ом•см (размеры провода – в сантиметрах)

1.72*10^-8 Ом•м (сокращением, из Ом*м^2/м – метровый кубик, площадь токоведущего сечения – 1м2 , т.е. между противоположными гранями)

17.2 нОм•м (наноом-метр, 10^-9 Ом•м)

Металлы высокой проводимости (не более 0,1 мкОм.м) – используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления (не менее 0,3 микроом-метр) – применяются для производства образцовых резисторов, реостатов, электроизмерительных приборов, электронагревательных устройств, нитей ламп накаливания и т. п. Нагревательные сплавы должны выдерживать длительную работу на открытом воздухе – без разрушения при температурах не менее 1000 °С.

Таблица значений удельного электрического сопротивления,
мкОм·м (микроом-метр) = Ом·мм2/м (равные числовые величины)

при температуре окружающей среды 20 градусов по Цельсию

Серебро – 0,015-0,016
Медь – 0,0172-0,0180
Золото – 0,024
Алюминий – 0.026-0.030
Вольфрам – 0,053-0,055
Цинк 0,053-0,062
Никель – 0.068-0,073
Латунь (сплав меди с цинком) – 0,043 – 0,108
Железо – 0,098
Сталь – 0,10-0,14
Олово – 0,12
Оловяно-свинцовый припой – 0,14 – 0,16
Бронзовые сплавы – 0,02 – 0,2
Свинец – 0,217 – 0,227
Никелин – 0,4
Манганин – 0,42 – 0,48
Константан – 0,48 – 0,52
Нихром – 1,05-1,40
Фехраль – 1,15-1,35
Угольно-графитовые щётки для электрических машин – 20-50
Угольный сварочный электрод – 50-90 мкОм·м

Минералка (с минерализацией воды – 2-7 грамм на литр) – 1-4 *10^6 мкОм·м = 1-4 Ом•м
Вода грунтовая – 10-50 *10^6
Влажная / сырая садовая земля (верхний слой почвы, грунта – после поливки) – 20-60 *10^6

Почему в электросетях применяется высокое напряжение

В линии электропередачи, при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, считается желательным, увеличение напряжения до величин в десятки (внутригородские воздушные и кабельные сети электропередач на 380 вольт, 6, 10, 20, 35, 110, 220 и 330 кВ) и сотни киловольт (магистральные электросети сверхвысокого – ЛЭП500-750 кВ и ультравысокого напряжения, 1150кВ и выше) на линиях переменного и постоянного (150, 400, 800 кВ) тока. Но, при таких параметрах эксплуатации, постоянно растущем потреблении электрической энергии и частых пиковых перегрузках, износ оборудования, отсутствие резервных мощностей, погодные аномалии, локальные несоответствия требованиям безопасности, непрофессионализм и элементарное разгильдяйство – могут стать причиной нештатных ситуаций и системных аварий (называемых теперь, на английский манер – блэкаут). По этой причине, муниципальные власти любого посёлка и города – имеют постоянную головную боль по обеспечению резервными источниками питания (аккумуляторами и дизель-генераторами) для бесперебойного электроснабжения социальных объектов по резервной схеме.

Спецсплавы на медной основе, в электротехнике

При больших токах, до 10 А – применяют проволочный резистор большой мощности, называемый реостатом. В качестве обмотки используют проволоку, изготовленную из термостабильного (с минимальным температурным коэффициентом) сплава с большим удельным сопротивлением, например, из константана (40% Ni, 1,2% Mn, 58,8% Cu). Если напряжение между соседними витками не превышает 1 вольта – такую проволку можно наматывать плотно, виток к витку, без особой изоляции между витками, благодаря наличию естественной плёнки окисла, образующейся на поверхности данного металла, при быстром (не более трёх секунд) нагреве до достаточно высокой температуры (порядка 900 °С).

Читайте также:  Концевые балки для кран балки

В приборах высокого класса точности – применяется манганин (3%Ni, 12%Mn, 85%Cu), менее термоустойчивый, но, в отличие от константанового провода, имеющий очень малую термоЭДС (контактную разность электрических потенциалов) в паре с медью.

Обозначения рекомендуемых кратных и дольных величин от единиц СИ

10^9 Ом – гигаом ГОм GΩ
10^6 Ом – мегаом МОм MΩ
10^3 Ом = 1000 Ом – килоом кОм kΩ.
10^-2 Ом – сантиом сОм cΩ
10^-3 Ом – миллиом мОм mΩ.
10^-6 Ом – микроом мкОм µΩ
10^-9 Ом – наноом нОм nΩ

Зависимость сопротивления от температуры.

При нагревании, электрическое сопротивление металлических проводников – возрастает, а при охлаждении – уменьшается. Для вычисления, по формуле, электросопротивления при определённой температуре – используют, так называемый, "температурный коэффициент сопротивления" (ТКС). Расчёты ведутся от некоторого начального уровня температуры. Для интервала температур, в пределах обычных погодных условий (в зимнее и летнее время года) окружающей среды, зависимость для проводника описывается математической формулой:

R2 = R1 * (1 + α * (t2 – t1)),

где R1 (начальное, известное значение, при нуле или 20 градусов по Цельсию, измеренное или посчитанное) и R2 (искомое) – сопротивления резистора соответственно при температурах t1 (0°С или 20°С) и t2; α – температурный коэффициент сопротивления (из справочной таблицы), равный относительному изменению электр. сопротивления (удельного или абсолютного) при изменении температуры на 1 °С. Так как значения ТКС очень малы, то в справочниках их указывают в единицах тысячных или миллионных долей (ppm/°С – Parts Per Million) относительного изменения сопротивления на градус.

Обычно, исходные, табличные значения различных физических постоянных – приводятся или к нормальной комнатной температуре +20 °С или к нулевой (в справочных таблицах проводниковых и реостатных материалов, применяемых в электрических аппаратах).

В металлических термометрах, изготавливаемых из медной или платиновой проволоки – электросопротивление, с повышением температуры (без экстремально высоких, для этих материалов, значений) увеличивается почти линейно. Но, при чрезмерно сильном нагреве, к примеру, тонкого медного провода до температуры красного каления, его активное электрическое сопротивление постоянному току возрастает многократно.

Пример расчёта для стометрового алюминиевого шинопровода, радиусом 40 мм, нагретого на 95°С:
R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

2

0,05 0,07 0,1 0,2 0,3 0,4 0,5 0,7 1 1,5 2 2,5 4 6 11 Наибольший допустимый ток, А 0,7 1 1,3 2,5 3,5 4 5 7 10 14 17 20 25 30 54

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака. Вторая буква означает класс точности, то есть, допускаемое отклонение от указанной величины. Номиналы на мелкие детали – наносят в виде маркировки цветными кольцами, полосками или точками (в зависимости от применяемого стандарта). Каждому цвету соответствует определенная цифра, означающая число Ом, множитель / степень или процент точности. Для быстрого определения номинала резистора по цветовой кодировке, применяются специальные компьютерные программы.
Читать дальше.

Пример расчёта, на основе школьной задачки по физике из программы 9 класса.

Задание: определить (найти в таблице), по известному удельному сопротивлению p = 0.017Ом·мм2/м – какой это материал? Рассчитать диаметр проволоки. Вычислить электрическое сопротивление провода, длиной L = 80 см, сечением S = 0.2 мм2
Решение задачи:
По таблице определяем, что удельное сопротивление, равное 0.017 Ом·мм2/м может быть у меди.

Из формулы S = 3.1416 * (радиус)^2 = 3.142 * ((диаметр)^2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Электромонтажные работы – монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м 2 .

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10 -8 Ом·м.

Удельное электрическое сопротивление углеродистых сталей ρэ·10 8 , Ом·м

Температура, °С Сталь 08КП Сталь 08 Сталь 20 Сталь 40 Сталь У8 Сталь У12
12 13,2 15,9 16 17 18,4
20 13 14,2 16,9 17,1 18 19,6
50 14,7 15,9 18,7 18,9 19,8 21,6
100 17,8 19 21,9 22,1 23,2 25,2
150 21,3 22,4 25,4 25,7 26,8 29
200 25,2 26,3 29,2 29,6 30,8 33,3
250 29,5 30,5 33,4 33,9 35,1 37,9
300 34,1 35,2 38,1 38,7 39,8 43
350 39,3 40,2 43,2 43,8 45 48,3
400 44,8 45,8 48,7 49,3 50,5 54
450 50,9 51,8 54,6 55,3 56,5 60
500 57,5 58,4 60,1 61,9 62,8 66,5
550 64,8 65,7 68,2 68,9 69,9 73,4
600 72,5 73,4 75,8 76,6 77,2 80,2
650 80,7 81,6 83,7 84,4 85,2 87,8
700 89,8 90,5 92,5 93,2 93,5 96,4
750 100,3 101,1 105 107,9 110,5 113
800 107,3 108,1 109,4 111,1 112,9 115
850 110,4 111,1 111,8 113,1 114,8 117,6
900 112,4 113 113,6 114,9 116,4 119,6
950 114,2 114,8 115,2 116,6 117,8 121,2
1000 116 116,5 116,7 117,9 119,1 122,6
1050 117,5 117,9 118,1 119,3 120,4 123,8
1100 118,9 119,3 119,4 120,7 121,4 124,9
1150 120,3 120,7 120,7 122 122,3 126
1200 121,7 122 121,9 123 123,1 127,1
1250 123 123,3 122,9 124 123,8 128,2
1300 124,1 124,4 123,9 124,6 128,7
1350 125,2 125,3 125,1 125 129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·10 8 , Ом·м

Марка стали 20 100 300 500 700 900 1100 1300
15ХФ 28,1 42,1 60,6 83,3
30Х 21 25,9 41,7 63,6 93,4 114,5 120,5 125,1
12ХН2 33 36 52 67 112
12ХН3 29,6 67 116
20ХН3 24 29 46 66 123
30ХН3 26,8 31,7 46,9 68,1 98,1 114,8 120,1 124,6
20ХН4Ф 36 41 56 72 102 118
18Х2Н4ВА 41 44 58 73 97 115
30Г2 20,8 25,9 42,1 64,5 94,6 114,3 120,2 125
12МХ 24,6 27,4 40,6 59,8
40Х3М 33,1 48,2 69,5 96,2
20Х3ФВМ 39,8 54,4 74,3 98,2
50С2Г 42,9 47 60,1 78,8 105,7 119,7 124,9 128,9
30Н3 27,1 32 47 67,9 99,2 114,9 120,4 124,8
Читайте также:  Как измерить сечение многожильного провода

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10 -8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10 -8 Ом·м.

Удельное электрическое сопротивление высоколегированных сталей ρэ·10 8 , Ом·м

Марка стали 20 100 300 500 700 900 1100 1300
Г13 68,3 75,6 93,1 95,2 114,7 123,8 127 130,8
Г20Х12Ф 72,3 79,2 91,2 101,5 109,2
Г21Х15Т 82,4 95,6 104,5 112 119,2
Х13Н13К10 90 100,8 109,6 115,4 119,6
Х19Н10К47 90,5 98,6 105,2 110,8
Р18 41,9 47,2 62,7 81,5 103,7 117,3 123,6 128,1
ЭХ12 31 36 53 75 97 119
40Х10С2М (ЭИ107) 86 91 101 112 122

Хромистые нержавеющие стали

Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10 -8 Ом·м.

Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·10 8 , Ом·м

Марка стали 20 100 300 500 700 900 1100 1300
Х13 50,6 58,4 76,9 93,8 110,3 115 119 125,3
2Х13 58,8 65,3 80 95,2 110,2
3Х13 52,2 59,5 76,9 93,5 109,9 114,6 120,9 125
4Х13 59,1 64,6 78,8 94 108

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10 -8 Ом·м.

Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·10 8 , Ом·м

Марка стали 20 100 300 500 700 900 1100
12Х18Н9 74,3 89,1 100,1 109,4 114
12Х18Н9Т 72,3 79,2 91,2 101,5 109,2
17Х18Н9 72 73,5 92,5 103 111,5 118,5
Х18Н11Б 84,6 97,6 107,8 115
Х18Н9В 71 77,6 91,6 102,6 111,1 117,1 122
4Х14НВ2М (ЭИ69) 81,5 87,5 100 110 117,5
1Х14Н14В2М (ЭИ257) 82,4 95,6 104,5 112 119,2
1х14Н18М3Т 89 100 107,5 115
36Х18Н25С2 (ЭЯ3С) 98,5 105,5 110 117,5
Х13Н25М2В2 103 112,1 118,1 121
Х7Н25 (ЭИ25) 109 115 121 127
Х2Н35 (ЭИ36) 87,5 92,5 103 110 116 120,5
Н28 84,2 89,1 99,6 107,7 114,2 118,4 122,5

Жаропрочные и жаростойкие стали

По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Читайте также:  Станок для гнутья проволоки

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2 , если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2 , что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

Проводник Удельное сопротивление
ρ
Температурный коэффициент α
Алюминий 0,028 4,2
Бронза 0,095 — 0,1
Висмут 1,2
Вольфрам 0,05 5
Железо 0,1 6
Золото 0,023 4
Иридий 0,0474
Константан 0,5 0,05
Латунь 0,025 — 0,108 0,1-0,4
Магний 0,045 3,9
Манганин 0,43 — 0,51 0,01
Медь 0,0175 4,3
Молибден 0,059
Нейзильбер 0,2 0,25
Натрий 0,047
Никелин 0,42 0,1
Никель 0,087 6,5
Нихром 1,05 — 1,4 0,1
Олово 0,12 4,4
Платина 0.107 3,9
Ртуть 0,94 1,0
Свинец 0,22 3,7
Серебро 0,015 4,1
Сталь 0,103 — 0,137 1-4
Титан 0,6
Фехраль 1,15 — 1,35 0,1
Хромаль 1,3 — 1,5
Цинк 0,054 4,2
Чугун 0,5-1,0 1,0

Где: удельное сопротивление ρ измеряется в Ом*мм 2 /м и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3 *C -1 (или K -1 ) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Ссылка на основную публикацию
Adblock
detector