У биполярных транзисторов средний слой называют

Транзистор, назначением которого является усиление мощности электрических сигналов, представляет собой полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два рn -перехода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов). Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р- n -р или n -р- n ). Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу. Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод-коллектором.

На рис. 1.13, а приведено схематическое изображение структуры транзистора типа n-р-n и два варианта условного графического обозначения (рис. 1.13, б). Транзистор типа р-n-р устроен аналогично, упрощенное изображение его структуры дано на рис. 1.14, а, вариант условного графического обозначения – на рис. 1.14, б. Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки.

Рис. 1.13 Устройство (а) и обозначение транзистора типа n -р- n (б)

Но в различных типах транзисторов роль электронов и дырок различна.

Транзисторы типа n-р-n более распространены в сравнении с транзисторами типа р-n-р, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа n-р-n играют электроны, а в транзисторах типа р-n-р – дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки и поэтому быстродействие транзисторов типа n-р-n выше.

Рис. 1.14 Устройство (а) и обозначение транзистора типа р- n -р (б)

Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора. Материалы исходного кристалла, а также технология изготовления транзисторов в значительной мере определяют их характеристики и параметры. По применяемому материалу транзисторы классифицируются на германиевые и кремниевые, а по технологии изготовления – на сплавные, выращенные, диффузионные, эпитаксиальные и планарные. В производстве дискретных транзисторов применяется, в основном, эпитаксиально-планарная и мезапланарная технологии, а в производстве транзисторов в составе интегральных микросхем – эпитаксиально-планарная. Целый ряд транзисторов изготавливают сочетанием двух или даже трех технологических методов.

Концентрация атомов примеси (и свободных электронов) в эмиттере сравнительно велика, поэтому этот слой низкоомный. Концентрация атомов примеси (и дырок) в базе сравнительно низка, поэтому этот слой высокоомный. Концентрация атомов примеси (и свободных электронов) в коллекторе может быть как больше концентрации атомов примеси в базе, так и меньше ее.

С помощью источников напряжения сместим эмиттерный переход в прямом, а коллекторный – в обратном направлении (рис. 1.15). Тогда через эмиттерный переход потечет ток i э, который будет обеспечиваться главным образом инжекцией электронов из эмиттера в базу. Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей. Из-за малой толщины базы почти все электроны, пройдя базу через так называемое время пролета, достигают коллектора. Только малая доля электронов рекомбинирует в базе с дырками. Убыль этих дырок компенсируется протеканием тока базы iб. Из изложенного следует, что iб i э.

Полярность напряжения коллекторного перехода способствует тому, что электроны, подошедшие к нему, захватываются электрическим полем коллектора и переносятся в коллектор. В то же время это поле препятствует переходу электронов из коллектора в базу. Ток коллектора i к лишь незначительно меньше тока эмиттера, т. е. i к » i э. Более точно:

Читайте также:  Приспособление для снятия пружин подвески своими руками

где a ст – так называемый статический коэффициент передачи эмиттерного тока (термин статический подчеркивает тот факт, что этот коэффициент связывает постоянные токи); I ко – так называемый обратный ток коллектора.

Природа обратного тока коллектора такая же, как и у обратного тока диода (т. е. тока диода, включенного в обратном направлении). Ток I ко протекает и тогда, когда ток эмиттера равен нулю, т.е. является неуправляемым.

Рассмотрим характерные схемы включения транзистора и соответствующие характеристики:

1) Схема с общей базой (рис. 1.16). Приведенная схема включения транзистора в электрическую цепь называется схемой с общей базой, так как база является общим электродом для источников напряжения. Транзисторы характеризуют их так называемыми входными и выходными характеристиками. Для схемы с общей базой входной характеристикой называют зависимость тока i э от напряжения u бэ при заданном напряжении u кб, т. е. зависимость вида

Рис. 1.15 Принцип действия транзистора

Рис. 1.16 Схема с общей базой

Входной характеристикой называют и график соответствующей зависимости (это справедливо и для других характеристик). Входная характеристика в значительной степени определяется характеристикой эмиттерного перехода и поэтому аналогична прямой ветви характеристики диода и приведена на рис. 1.17. Сдвиг характеристик влево при увеличении напряжения икб объясняется проявлением так называемого эффекта модуляции толщины базы. Этот эффект состоит в том, что при увеличении напряжения икб коллекторный переход расширяется (как и всякий обратно смещенный р- n -переход). Если концентрация атомов примеси в базе меньше концентрации атомов примеси в коллекторе, то расширение коллекторного перехода осуществляется в основном за счет базы. В любом случае толщина базы уменьшается. Уменьшение толщины базы и соответствующее уменьшение ее сопротивления приводит к тому, что при неизменном токе i к напряжение u бэ уменьшается. Как было отмечено при рассмотрении диода, при малом обратном напряжении на р- n -переходе это напряжение влияет на ширину перехода больше, чем при большом.

Входные характеристики часто характеризуют дифференциальным сопротивлением r диф, определяемым аналогично дифференциальному сопротивлению диода:

Семейством выходных характеристик для схемы с общей базой (рис. 1.18) называют зависимости тока i к от напряжения u кб при различных токах i э, т.е. зависимость вида:

Рис. 1.17 Входные характеристики

Рис. 1.18 Выходные характеристики

где i э заданное значение тока эмиттера.

Основным параметром, характеризующим усилительные свойства транзистора в этой схеме, является коэффициент передачи эмиттерного тока

где ? i к и ? i э ? приращения токов коллектора и эмиттера соответственно.

Рис. 1.19 Схема с общим эмиттером.

2) Схема с общим эмиттером (рис. 1.19). Так эта схема называется потому, что в этом случае эмиттер является общим электродом для источников напряжения. Для этой схемы входной характеристикой называют зависимость тока i б от напряжения u бэ, при заданном напряжении u кэ, т.е. зависимость вида:

Выходной характеристикой является зависимость тока i к от напряжения u кэ при заданном токе i б, т.е. зависимость вида:

Соответствующие зависимости приведены на
рис. 1.20 и 1.21 соответственно.

Дифференциальное сопротивление теперь определяется выражениями:

В соответствии с первым законом Кирхгофа

и с учетом предыдущего выражения получим

откуда

Рис. 1.20 Входные характеристики

Вводя понятие статического коэффициента передачи тока базы

Значение b ст для разных транзисторов лежит в пределах 20 ? 500, поэтому управление током коллектора по цепи базы гораздо более эффективно, чем по цепи эмиттера. Поэтому последняя схема включения транзистора используется гораздо чаще, чем с общей базой.

Читайте также:  Как рассчитать зубчатое колесо

Транзистор представляет собой двухпереходный прибор. Переходы образуются на границах тех трех слоев, из которых состоит транзистор. В зависимости от типа проводимости крайних слоев различают транзисторы
p-n-p и n-p-n со взаимно противоположными рабочими полярностями. Контакты с внешними электродами — омические (рис. 11).

Рис. 11. Структуры и условные обозначения

p-n-p (a, б) и n-p-n (в, г) биполярных транзисторов

Переход, работающий в прямом направлении, называется эмиттерным, а соответствующий крайний слой — эмиттером. Средний слой называется базой. Второй переход, нормально смещенный в обратном направлении, называется коллекторным, а соответствующий крайний слой — коллектором.

Как элемент электрической цепи, транзистор обычно используют таким образом, что один из его электродов является входным, а другой — выходным. Третий электрод является общим относительно входа и выхода. В цепь входного электрода включают источник входного пере­менного сигнала, а в цепь выходного — сопротивление нагрузки. В зависимости от того, какой электрод являет­ся общим, различают три схемы включения транзисторов: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК) (рис. 12).

Рис. 1 2. Схемы включения биполярного транзистора:

а – с общей базой, б – общим эмиттером, в – общим коллектором

Основные процессы, протекающие в биполярном транзисторе, рассмотрим на примере транзистора, типа р-п-р, включенного по схеме с общей базой (рис. 13).

Рис. 13.Транзистор типа р-п-р, включенный по схеме с ОБ

При отсутствии внешних напряжений (Uэб=Uкб=0) поля р-n-переходов создаются лишь объемными зарядами ионов и установившиеся потен­циальные барьеры обоих пере­ходов поддерживают динами­ческое равновесие, а токи через переходы равны нулю. При на­личии источников смещения Eэ, и Екуказанной полярности (нормальное включение) соз­даются условия для инжекти­рования дырок из эмиттера в базу и перемещения электронов из базы в эмиттер. Поскольку концентрация электронов в базе во много раз меньше концентрации дырок в слое эмиттера, то встречный поток электронов значительно меньше. Поэтому при встречном перемещении дырок и электронов произойдет их частичная рекомбинация, а избыток дырок внедряется в слой базы, образуя ток эмиттера Iэ.

В результате инжекции дырок в базу, где они являют­ся неосновными носителями, в последней возникает градиент (перепад) концентрации дырок, что приводит к их диффузионному перемещению во всех направле­ниях, в том числе и к коллекторному р-n-переходу. Дрейф (перемещение носителей под воздействием электри­ческого поля) неосновных носителей к коллектору играет второстепенную роль. При перемещении через базу концентрация неосновных носителей заряда уменьшается за счет рекомбинации с электронами, поступающими в ба­зовую цепь от источника Eэ. Поток этих электронов образу­ет базовый ток Iб. Так как толщина базы wб современных транзисторов составляет единицы микрон, то большая часть дырок достигает коллекторного р-n-перехода и захватывается его полем, рекомбинируя с электронами, поступающими от источника питания Ек. При этом в кол­лекторной цепи проходит ток Iк, замыкая общую цепь тока. Таким образом, для токов транзистора справедли­во соотношение Iэ = Iб + Iк.

При любом варианте включения транзистора имеется две входные величины (ток и напряжение) и две выходные. Взаимозависимость этих четырех величин можно выразить двадцатью четырьмя семействами характеристик, но наиболее широкое распространение получила система:

Читайте также:  Как использовать эпоксидный клей

Первое уравнение — это семейство входных характеристик, второе — выходных. На рис. 14 представлены идеальные семейства входных и выходных характеристик транзистора. На входных характеристиках (рис. 14, а) кривая при Uкб=0 является обычной прямой ветвью диодной ВАХ. При значениях Uбк>0 кривые сдвигаются влево и вверх в связи с нарастанием собираемого компонента эмиттерного тока.

Рис. 14. Идеальные статические характеристики транзистора:
а — входные; б — выходные

Выходные характеристики — это обратные ветви ВАХ диода, ток насыщения которого зависит от тока базы. Входной ток Iб в принципе может иметь не только положительную, но и небольшую отрицательную величину. Зависимость выходного тока коллектора от Iб обычно описывается следующим образом:

Коэффициент при токе Iб называется коэффициентом передачи базового тока. Довольно часто его называют также просто коэффициентом усиления транзистора. Обычно β>>1. Ток — нулевой ток коллектора в схеме, т. е. ток при оборванной базе. Следует отметить, что режим работы транзистора с оборванной базой очень опасен из-за возможности пробоя, поэтому непосредственно ток не измеряют. Минимально возможный ток коллектора будет получаться при отрицательном токе базы.

Дата добавления: 2015-11-12 ; просмотров: 701 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Результат теста «Электроника»

Правильные ответы выделены красным цветом.

1.Какие диоды применяют для выпрямления переменного тока?

а) Плоскостные б) Точечные

в) Те и другие г) Никакие

2.В каких случаях в схемах выпрямителей используется параллельное включение диодов?

а) При отсутствии конденсатора

б) При отсутствии катушки

в) При отсутствии резисторов

г) При отсутствии трёхфазного трансформатора

3.Из каких элементов можно составить сглаживающие фильтры?

а) Из резисторов б) Из конденсаторов

в) Из катушек индуктивности г) Из всех вышеперечисленных приборов

4.Для выпрямления переменного напряжения применяют:

а) Однофазные выпрямители б) Многофазные выпрямители

в) Мостовые выпрямители г) Все перечисленные

5. Какие направления характерны для совершенствования элементной базы электроники?

а) Повышение надежности б) Снижение потребления мощности

в) Миниатюризация г) Все перечисленные

6.Укажите полярность напряжения на эмиттере и коллекторе транзистора типа p-n-p.

а) плюс, плюс б) минус, плюс

в) плюс, минус г) минус, минус

7.Каким образом элементы интегральной микросхемы соединяют между собой?

а) Напылением золотых или алюминиевых дорожек через окна в маске

б) Пайкой лазерным лучом

в) Термокомпрессией

г) Всеми перечисленными способами

8. Какие особенности характерны как для интегральных микросхем (ИМС) , так и для больших интегральных микросхем(БИС)?

а) Миниатюрность б) Сокращение внутренних соединительных линий

в) Комплексная технология г) Все перечисленные

9.Как называют средний слой у биполярных транзисторов?

а) Сток б) Исток

в) База г) Коллектор

10. Сколько p-n переходов содержит полупроводниковый диод?

а) Один б) Два

в) Три г) Четыре

11.Как называют центральную область в полевом транзисторе?

а) Сток б) Канал

в) Исток г) Ручей

12.Сколько p-n переходов у полупроводникового транзистора?

а) Один б) Два

в) Три г) Четыре

13.Управляемые выпрямители выполняются на базе:

а) Диодов б) Полевых транзисторов

в) Биполярных транзисторов г) Тиристоров

14. К какой степени интеграции относятся интегральные микросхемы, содержащие 500 логических элементов?

а) К малой б) К средней

в) К высокой г) К сверхвысокой

15.Электронные устройства, преобразующие постоянное напряжение в переменное, называются:

а) Выпрямителями б) Инверторами

в) Стабилитронами г) Фильтрами

16. Какими свободными носителями зарядов обусловлен ток в фоторезисторе?

а) Дырками б) Электронами

в) Протонами г) Нейтронами

Ссылка на основную публикацию
Adblock
detector