Smd конденсаторы проверка мультиметром

Содержание

Ходит одна байка: для проверки конденсатора мультиметр не нужен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь — шарахнет сильно. Избегайте лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.

Процесс проверки конденсатора

Увидите, проверить мультиметром конденсатор может каждый. Неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.

Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:

  1. Скачать в интернете нужную схему, едва ли в руках имеется готовая.
  2. Прикинуть напряжение на проверяемом конденсаторе. В блоках питания, например, удобно идти по шинам земли-питания, выясняя вопрос. Решается не для проверки конденсатора непосредственно, а знать уточнить диапазон, выставляемый мультиметром. Неправильно стоит род тока (напряжения), неверно подсоединены контакты — выход измерителя из строя гарантирован.
  3. Задача – проверить наличие напряжения на конденсаторе. Имеется — емкость зарядится.
  4. Схемой прослеживаем путь разряда: резисторы, диоды, транзисторы, включенные в правильном направлении. Оговоримся, речь ведем о крупных, мощных конденсаторах преимущественно блоков питания. Полярность не позволяет разрядиться через диод выпрямителя, включенный в обратном направлении. Резистор увеличением номинала повышает время протекания процесса, элемент станет бить током. Ученые называют временем разряда, явление характеризуется постоянной, представляющей произведение номинала резистора на емкость, выраженную фарадами. Беря тестер, ставя на постоянный диапазон, видим падающий потенциал. По времени несложно оценить величину, годность емкости.

Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:

    Измерение переменного напряжения понадобится большинству. Диапазон помечается знаком тильды

. Рядом стоит английская буква V (Voltage).

Проверить емкость конденсатора мультиметром

Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.

На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Требуется, чтобы оценить параметры. К примеру, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.

Зная указанные вещи, понимаем, что делать дальше:

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
  3. Попутно сопротивлению начнёт расти от нуля до бесконечности.

Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Теперь проводим анализ. Выяснили, годен ли конденсатор, присутствуют некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.

Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:

  1. Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
  2. По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.

Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.

Известен простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, не всегда удаётся. Параллельно емкости включены резисторы, дроссели, другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.

Читайте также:  Реверсивный рубильник однофазный для дома

Проведём сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — возможно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.

Что такое конденсатор

Среди электронных компонентов, наиболее часто встречающихся в рекомендациях по ремонту оборудования наверно более 50% всех случаев поломки случаются из-за неисправности конденсаторов. Как электрический прибор конденсатор участвует во множестве электрических схем. Основа работы такого элемента основана на постепенном накоплении электричества разного потенциала между обкладками и его последующего резкого разряда.

Сегодня наиболее распространенными в схемотехнике являются два вида конденсаторов:

  • электролитические или полярные, называются так, потому что при включении в схему аппаратуры требуют установки согласно полярности: «плюс» к плюсу схемы, а вот «минус» к отрицательному;
  • неполярные все остальные типы конденсаторов.

На практике эти электронные компоненты являются небольшими по размерам приборами, но при этом имеют очень большую и довольно чувствительную емкость, поэтому при работе с ними необходимо максимально соблюдать осторожность и внимательность.

Принцип работы

Принцип работы, на котором основана работа этого радиоэлемента заключается в том, что при использовании его в электрических схемах он способен накапливать электрический заряд.

Это свойство, возможно только с переменным электрическим током – поэтому он применяется в схемах, где необходимо разделение двух составляющих тока – постоянной и переменной. А вот в схемах с постоянным электрическим током конденсатор будет выполнять роль диэлектрика, поскольку в таких условиях он не способен накапливать заряд.

Область применения

Конденсаторы применяются в зависимости от своего номинала и маркировки в различных радиосхемах и электронных приборах. Это в основном небольшие по емкости компоненты, выход их строя которых не сопровождается большими и разрушительными последствиями.

Возможные неисправности

Нерабочая электрическая схема прибора или незапускающийся двигатель сам по себе сигнализирует о неисправности одного или нескольких компонентов схемы, а вот конкретно неисправность конденсатора может быть следствием некоторых факторов, влияющих на работоспособность элемента:

  • короткого замыкания внутри между обкладками;
  • порыва внутренней цепи элемента;
  • превышения допустимого тока утечки;
  • уменьшения номинальной емкости данного прибора;
  • физического повреждения корпуса и нарушения его герметичности.

Как определить поломку по внешним признакам

Вышедший из строя электронный компонент, возможно определить, или во всяком случае поставить под сомнение его работоспособность возможно благодаря следующим внешним признакам:

  • нарушение герметичности корпуса – в виде разрыва внешнего корпуса и выступившего электролита;
  • раздутого корпуса элемента с видными повреждениями геометрии (чаще всего они имеют цилиндрическую форму, поэтому выпуклости на внешней оболочке говорят о его неисправности).

Как проверить конденсатор (пусковой/высоковольтный/пленочный и т.д.) мультиметром

Самым простым и надежным способом проверки неисправного конденсатора является проверка его омметром, или специально собранной проверочной схемы. Омметр покажет сопротивление электронного устройства, по которому можно судить о целостности диэлектрика, и делать выводы об исправности элемента.

Сам процесс можно описать алгоритмом:

  • измерительный прибор переводится в режим омметра;
  • омметр выставляется в верхний режим измерения сопротивления – бесконечность значения;
  • проводится измерение сопротивления устройства на выводах – в случае если прибор показывает низкое значение сопротивления (любое отличное от значения «бесконечность») то тестируемый элемент непригоден к дальнейшей работе, внутри имеется пробой диэлектрика или утечка электролита.

Небольшое отклонение стрелки на циферблате тестера при проверке подобного типа электронных устройств с последующим возвращением в исходное нулевое положение свидетельствует о том, что конденсатор исправен и начал набирать небольшую емкость.

Отклонение стрелки мультиметра на определенную величину с последующим возвращением и фиксацией на каком-либо значении сопротивления говорит о неисправности элемента.

Как проверить не выпаивая

Одним из вариантов проверки работоспособности конденсаторов без демонтажа их из схемы является включение в схему параллельно испытуемому элементу исправного компонента соответствующего номинала. Такой вариант позволяет судить о работоспособности испытуемого электронного устройства и определить вариант его замены.

Вообще чаще всего в рабочих устройствах выходят из строя в основном электролитические конденсаторы, реже полиэтилентерефталатные в высоковольтных цепях.

Как узнать ёмкость конденсатора

В большинстве случаев емкость прибора указывается в маркировке на корпусе элемента. Однако зачастую существует необходимость определения емкости электронных компонентов с недостаточно четко промаркированными данными.

В большинстве мультиметров имеется 5 пределов измерения:

  • 20 нФ (20nF)
  • 200 нФ (200nF)
  • 2 мкФ (2uF)
  • 20 мкФ (20uF)
  • 200 мкФ (200uF)

Такой диапазон измерения емкости элементов позволяет проводить тестирование, как неполярных конденсаторов, так и полярных, то есть электролитических. Сам процесс проведения тестирования выглядит так:

    Контрольные щупы прибора переключаются к специальным гнездам измерения емкости (гнезда Сх).

Полученное значение и показывает емкость электронного компонента схемы.

В отдельных мультиметрах, вместо специальных гнезд на рабочую панель выведены металлические пластины. Проверка элемента проводится путем присоединения выводов к платинам с соблюдением полярности.

Советы и рекомендации

Приступая к проверке элементов необходимо четко понимать, что даже самые современные мультиметры не способны измерять очень большую емкость таких устройств, в большинстве своем максимальным пределом является измерение как полярных, так и неполярных элементов емкостью до 200 мкФ (200uF).

Читайте также:  Фрезер принцип работы видео

Не лишне радиолюбителям помнить и о технике безопасности при проверке подобных утройств высоковольтных схемах.

Ремонт бытовой радиоаппаратуры в которой применяются высоковольтные схемы, должен начинаться после выключения прибора и разрядки электронного компонента разрядной цепью из резистора номиналом 2 кОм…1 Мом, которая соединяется с общим проводом схемы или корпусом:

  • в низковольтных цепях с емкостями до 1000 мкФ и напряжением до 400 В достаточно 2 кОм (25 Вт);
  • для цепей с емкостями до 2 мкФ и со средними рабочими напряжениями до 5000 В — 100 кОм (25 Вт);
  • для высоковольтных цепей с емкостями до 2 нФ и рабочими напряжениями до 50 кВ — 1 МОм (10 Вт).

Ну и для любителей экстрима вполне может подойти древнейший способ проверки устройств большой емкости. После полной зарядки, а свойство заряжаться и копить заряд электричества в данном случае будет иметь основное значение, выводы элемента замыкаются на металлическом предмете, при этом желательно не только изолировать сам предмет, но и руки резиновыми перчатками.

Результат должен проявиться в неповторимой искре и одновременном звуковом сопровождении процесс разряда.

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Как проверить конденсатор мультиметром

Я рад снова видеть все вас на страницах сайта «Электрик в доме». Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор. История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).

В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Вот почему, в случае неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.

Для этих целей и предназначен недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.

С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.

Проверка конденсатора мультиметром

Для лучшего усвоения материала, начнем с небольшой теории:

  • Устройство и принцип работы мультиметра;
  • Виды и особенности конденсаторов.

Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.

Конденсаторы могут быть двух видов: полярными и неполярными.

Конденсаторы полярные.

Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.

Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах 0.1 ÷ 100000 мкФ.

Конденсаторы неполярные

Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад до нескольких пикофарад).

Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!

Как проверить конденсатор с помощью приборов

Любую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки и последующее ее вздутие.

После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.

Читайте также:  Сколько атмосфер выдает керхер

Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.

Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит — «1» (единицу), что укажет на неисправность конденсатора.

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор , при этом достаточно замкнуть его контакты при помощи любого металла.

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ, показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Как проверить емкость конденсатора

Главный показатель, основная характеристика всех конденсаторов — это «емкость». Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.

Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?

В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)

Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:

Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы -CX+. (не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями.

Продолжаем проверку конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.

Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам заявленным производителем.

Запомните, если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.

Как проверить конденсатор при помощи прибора ESR-METR

Недавно я приобрел ESR-METR и я решил выполнить им ту же самую проверку.

Методика проверки очень проста. Прибор необходимо откалибровать, в моем случае в комплекте идет специальная перемычка, при помощи которой замыкается нужная группа контактов на колодке 1-4. Нажимаем кнопку и прибор автоматический калибруется, сообщив нам об этом на своем экране. После калибровки не забываем разрядить конденсатор и подключаем его к нужным нам разъемам. и производим измерение.

Каждый конденсатор обладает и паразитными свойствами, например сопротивлением. Из фото видно, что емкость конденсатора соответствует заявленным характеристикам, а также присутствует паразитное последовательное сопротивление номиналом 1.2 Ом, из за этого потери на данном конденсаторе составляют 0,5%.

В нашем случает этот показатель великоват, что говорит о высыхании конденсатора, устанавливать его в схему не рекомендуется.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Ссылка на основную публикацию