Шпиндель вертикально сверлильного станка

Содержание

Сведения о производителе вертикально-сверлильного станка 2Н135

Изготовитель сверлильных станков моделей 2Н125, 2Н135, 2Н150, 2Г175 – Стерлитамакский станкостроительный завод, основанный в 1941 году.

История Стерлитамакского станкостроительного завода начинается 3 июля 1941 года, когда началась эвакуация Одесского станкостроительного завода в город Стерлитамак.

Уже 11 октября 1941 г. Стерлитамакский станкостроительный завод начал выпускать специальные агрегатные станки для оборонной промышленности.

В настоящее время завод выпускает металлообрабатывающее оборудование, среди которого – токарные и фрезерные станки с ЧПУ, многофункциональные обрабатывающие центры, металлообрабатывающий и режущий инструмент.

Продукция Стерлитамакского станкостроительного завода

2Н135 станок вертикальный сверлильный универсальный одношпиндельный. Назначение и область применения

Станки универсальные вертикально-сверлильные 2Н135, с условным диаметром сверления 35 мм, используются на предприятиях с единичным и мелкосерийным выпуском продукции и предназначены для выполнения следующих операций: сверления» рассверливания» зенкования, зенкерования, развертывания и подрезки торцев ножами.

Пределы чисел оборотов и подач шпинделя позволяют обрабатывать различные виды отверстий на рациональных режимах резания.

Наличие на станках механической подачи шпинделя, при ручном управлении циклами работы.

Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.

Станки снабжены устройством реверсирования электродвигателя главного движения, что позволяет производить на них нарезание резьбы машинными метчиками при ручной подаче шпинделя»

Категория размещения 4 по ГОСТ 15150-69.

Разработчик – Одесское специальное конструкторское бюро специальных станков.

Хронология выпуска заводом вертикально-сверлильных станков 2135 серии с диаметром сверления до 35 мм:

  • 2135 – первая модель серии вертикально-сверлильных станков, выпускалась с 1945 по 1950 г.
  • 2А135 – следующие модели серии, выпускались с 1950 по 1965 г.
  • 2Н135, 2Н135А, 2Н135Б, 2Н135К, 2Н135Л – самая популярная и массовая модель серии, выпускалась c 1965 до начала 90-х годов
  • 2С135, 2С132 – последние модели серии. Сняты с производства в 2014 году

Модификации сверлильных станков 2Н135

Для обработки отверстий разных диаметров применяются базовые вертикально-сверлильные станки моделей: 2Н135. Последние две цифры номера каждой модели указывают наибольший диаметр отверстия в мм, которое можно сверлить на этом станке в заготовках из стали 45.

На основе базовой модели вертикально-сверлильного станка 2Н135 созданы следующие модифицированные модели:

2Н135А — вертикально-сверлильные станки с автоматизированным управлением (управление производится с помощью заранее настроенных кулачков и кнопок);

2Н135К — координатные вертикально-сверлильные станки с крестовым столом;

2Н135-1 — координатные вертикально-сверлильные станки с крулым поворотным столом;

2Н135С — специальные однопозиционные вертикально-сверлильные станки с фланцевой пинолью, служащей для крепления многошпиндельных головок;

2Н135Н — многопозиционные сверлильные станки, предназначенные для установки многошпиндельных головок и поворотных столов;

2Р135Ф2 — сверлильные станки с ЧПУ, крестовым столом и револьверной головкой и др.

Аналоги вертикально-сверлильных станков 2А135, выпускаемые в настоящее время:

  • 2Т125, 2Т140, 2Т150 – производитель: Гомельский завод станочных узлов
  • 2АС132, 2АС132-01 – производитель: Астраханский станкостроительный завод
  • 2Л125, 2Л132, 2Л135, ЛС25, ЛС35 – производитель: Липецкое станкостроительное предприятие (ПАО СТП-ЛСП)
  • МН25Л, МН25Н-01 – производитель: Молодечненский станкостроительный завод

Габарит рабочего пространства сверлильного станка 2Н135

Габарит рабочего пространства сверлильного станка 2Н135

Модель станка Конус Морзе А Б В D D1 М
2Н125 3 250 700 60 45 23,825 400
2Н135 4 300 750 30 60 31,267 450
2Н150 5 350 800 80 44,399 500

Общий вид сверлильного станка 2Н135

Фото сверлильного станка 2Н135

Фото сверлильного станка 2Н135

Фото сверлильного станка 2Н135

Расположение основных частей сверлильного станка 2Н135

Расположение основных узлов сверлильного станка 2Н135

Обозначение основных частей сверлильного станка 2Н135

  1. Привод сверлильного станка – 2Н135.21.000
  2. Коробка скоростей станка – 2Н135.20.000
  3. Насос плунжерный масляный – 2Н125.24.000 для станка 2Н125
  4. Насос плунжерный масляный – 2Н135.24.000
  5. Коробка подач – 2Н135.30.000
  6. Колонна, стол, плита – 2Н135.10.000
  7. Механизм управления скоростями и подачами – 2Н135.25.000
  8. Электрошкаф – 2Н125.72.000
  9. Электрооборудование – 2Н135.94.000
  10. Шпиндель в сборе – 2Н135.50.000
  11. Система охлаждения станка – 2Н135.80.000
  12. Сверлильная головка – 2Н135.40.000

Колонна, стол, плита. Колонна станка представляет собой чугунную отливку. По направляющим колонны типа "ласточкин хвост" вручную перемещаются сверлильная головка и стол. Стол станка имеет три Т-образных паза. На фундаментной плите установлен электронасос, а внутри плиты – резервуар с отстойником для охлаждающей жидкости.

Расположение органов управления сверлильным станком 2Н135

Расположение органов управления сверлильным станком 2Н135

Перечень органов управления сверлильным станком 2Н135

  1. Табличка – "Заполнение"
  2. Табличка – "Слив"
  3. Кран включения охлаждения
  4. Болты для регулировки клина стола и сверлильной головки
  5. Рукоятка перемещения стола и сверлильной головки
  6. Винты зажима стола и сверлильной головки
  7. Табличка – "Заземление"
  8. Вводный выключатель
  9. Табличка – "Главный переключатель"
  10. Сигнальная кнопка СТАНОК ВКЛЮЧЕН
  11. Кнопка включения правого вращения шпинделя
  12. Кнопка включения левого вращения шпинделя
  13. Кнопка включения качательного движения шпинделя при переключении скоростей и подач
  14. Рукоятка переключения скоростей
  15. Кнопка СТОП
  16. Табличка – "Частота вращения"
  17. Табличка – "Менять скорость только при остановке"
  18. Винты зажима стола и сверлильной головки
  19. Болты для регулировки клина стола и сверлильной головки
  20. Табличка – "Подача, мм за одни оборот"
  21. Рукоятка переключения подач
  22. Кнопка включения ручной подачи
  23. Штурвал механизма подач
  24. Лимб для отсчета глубины обработки
  25. Выключатель освещения
  26. Табличка – "Охлаждение"
  27. Выключатель насоса охлаждения
  28. Кулачок для настройки глубины обработки
  29. Кулачок для настройки глубины нарезаемой резьбы
  30. Рычаг автоматического реверсирования главного привода при достижении заданной глубины нарезаемой резьбы
  31. Рычаг отключения механической подачи при достижении заданной глубины обработки
  32. Квадрат для ручного перемещения сверлильной головки
Читайте также:  Основы работы на токарном станке по дереву

Кинематическая схема сверлильного станка 2Н135

Кинематическая схема сверлильного станка 2Н135

Перечень графических символов, указанных на табличках сверлильного станка 2Н135

Перечень графических символов, указанных на табличках сверлильного станка 2Н135

Коробка скоростей сверлильного станка 2Н135

Чертеж коробки скоростей сверлильного станка 2Н135

Коробка скоростей и привод. Коробка скоростей сообщает шпинделю 12 различных частот вращения с помощью передвижных блоков 5 (рис.7), 7, 8. Опоры валов коробки размещены в двух плитах – верхней и нижней 4, скрепленных между собой четырьмя стяжками 6. Коробка скоростей приводится во вращение вертикально расположенным электродвигателем через эластическую муфту 10 и зубчатую передачу 9. Последний вал 2 коробки – гильза – имеет шлицевое отверстие, через которое вращение передается.

Через зубчатую пару 3 вращение передается на коробку подач.

Смазка коробки скоростей, как и всех сборочных единиц сверлильной головки, производится от плунжерного насоса, закрепленного на нижней плите 4. Работа насоса контролируется специальным маслоуказателем на лобовой части подмоторной плиты.

Механизм управления скоростями и подачами сверлильного станка 2Н135

Пульт управления скоростями и подачами сверлильного станка 2Н135

Механизм переключения скоростей и подач сверлильного станка 2Н135

Механизм переключения скоростей и подач сверлильного станка 2Н135

Механизм переключения скоростей и подач. Переключение скоростей производится рукояткой 2 (рис.8), которая имеет четыре положения по окружности и три вдоль оси, переключение подач осуществляется рукояткой 3, имеющей три положения по окружности для станков моделей 2Н135 и четыре для 2Н150, и три положения вдоль оси. Рукоятки расположены на лобовой стороне сверлильной головки. Отсчет включаемых скоростей и подач производится по табличкам 1 и 4.

Коробка подач сверлильного станка 2Н135

Чертеж коробки подач сверлильного станка 2Н135

Коробка подач. Механизм смонтирован в отдельном корпусе и устанавливается в сверлильной головке. За счет перемещения двух тройных блоков шестерен осуществляются девять различных подач на станках 2Н125, 2Н135 и двенадцать подач на станке 2Н150. На станках 2Н125 и 2Н135 коробки подач отличаются только приводом, который состоит на станке 2Н125 из зубчатых колес 1 (рис.9), на станках 2Н125, 2Н135 – из зубчатых колес 2, 3 – соответственно. Коробка подач смонтирована в расточке верхней опоры червяка механизма подач. На последнем валу коробки посажена муфта 4, передающая вращение червяку.

Сверлильная головка станка 2Н135

Чертеж сверлильной головки сверлильного станка 2Н135

Сверлильная головка представляет собой отливку коробчатого сечения, в которой монтируются все основные сборочные единицы станка: коробка скоростей, коробка подач, шпиндель, механизм подачи, противовес шпинделя и механизм переключения скоростей и подач.

Механизм подачи, состоящий из червячной передачи, горизонтального вала с реечной шестерней, лимба, кулачковой и храповой обгонных муфт, штурвала, является составной частью сверлильной головки.

Механизм подачи приводится в движение от коробки подач и предназначен для выполнения следующих операций:

  • ручного подвода инструмента к детали;
  • включения рабочей подача;
  • ручного опережения подачи;
  • выключения рабочей подачи;
  • ручного отвода шпинделя вверх;
  • ручной подача, используемой при нарезании резьбы.

Принцип работы механизма подачи заключается в следующем: при вращении штурвала 14 (рис.10) на себя поворачивается кулачковая муфта 8, которая черев обойму-полумуфту 7 вращает вал-шестерню 3 реечной передачи, происходит ручная подача шпинделя. Когда инструмент подойдет к детали, на валу-шестерне 3 возникает крутящий момент, который не может быть передан зубцами кулачковой муфты 8, и обойма-полумуфта 7 перемещается вдоль вала до тех пор, пока торцы кулачков деталей 7 и 8 не встанут друг против друга. В этот момент кулачковая муфта 8 поворачивается относительно вала-шестерни 3 на угол 20°, который ограничен пазом в детали 8 и штифтом 10. На обойме – полумуфте 7 сидит двухсторонний храповой диск 6, связанный с полумуфтой собачками 13. При перемещении обоймы-полумуфты 7 зубцы диска 6 входят в зацепление с зубцами диска, выполненного заодно с червячным колесом 5. В результате вращение от червяка передается на реечную шестерню и происходит механическая подача шпинделя. При дальнейшем вращении штурвала 14 при включенной подаче собачки 13, сидящие в обойме-полумуфте 7, проскакивают по зубцам внутренней стороны диска 6; происходит ручное опережение механической подачи.

При ручном включении подачи штурвалом 14 (после поворота его на себя на угол 20°) зуб муфты 8 встает против впадины обоймы-полумуфты 7. Вследствие осевой силы и специальной пружины 12 обойма-полумуфта 7 смещается вправо и расцепляет зубчатые диски 5 и 6; механическая подача прекращается.

Механизм подач допускает ручную подачу шпинделя. Для этого необходимо выключить штурвалом 14 механическую подачу и колпачок 9 переместить вдоль оси вала-шестерни 3 от себя. При этом штифт II передает крутящий момент от кулачковой муфты 8 на горизонтальный вал. На левой стенке сверлильной головки смонтирован лимб 4 для визуального отсчета глубины обработав и настройки кулачков.

Для ручного перемещения сверлильной головки по направляющим колонны имеется механизм, который состоит из червячной пары 2 и реечной пары I. Для предохранения механизма подачи от поломки имеется предохранительная муфта 15. Гайка 16 и винт 17 служат для регулирования пружинного противовеса.

Шпиндель в сборе вертикально-сверлильного станка 2Н135

Чертеж шпинделя в сборе сверлильного станка 2Н135

Шпиндель 2 (рис.11) смонтирован на двух. Осевое усилие подачи воспринимается нижним упорным подшипником, а усилия выбивке инструмента – верхним. Подшипники расположены в гильзе 3, которая с помощью реечной пары перемещается вдоль оси. Регулировка подшипников шпинделя осуществляется гайкой 1.

Для выбивки инструмента служит специальное приспособление на головке шпинделя. Выбивка происходит при подъеме шпинделя штурвалом. Обойма приспособления упирается в корпус сверлильной головки, и рычаг 4, поворачиваясь вокруг оси; выбивает инструмент.

Электрооборудование и электрическая схема сверлильного станка 2Н135

Электрическая схема сверлильного станка 2Н135

Описание работы электросхемы станка

Включением вводного автомата В1 подается напряжение на главные и вспомогательные цепи, загорается сигнальная лампа. Если необходимо охлаждение и освещение, то соответствующие выключатели ставятся в положение "ВКЛЮЧЕНО". Нажатием кнопки Кн2 "ВПРАВО" катушка пускателя Р1 получает питание, главные контакты включают М1 на правое вращение шпинделя. Через блок-контакты Р1 включается пускатель Р5, включающий электронасос М2 и реле задержки Р12.

При нажатии кнопки КнЗ "ВЛЕВО" происходит отключение пускателя Р1, электродвигателя М1, реле Р12 после разряда конденсатора CЗ контакты реле Р12 (28-26) замыкаются и происходит включение пускателя Р2 и М1 на левое вращение. Реле Р12 включается снова.

При автоматическом реверсе эти переключения происходят при срабатывании микропереключателя В4 от кулачка, установленного на лимбе.

Останов осуществляется нажатием на кнопку Кн1 "СТОП", при этом отключаются пускатели Р1 или Р2, Р5, отключающие М1, М2. Через контакты реле Р12 (7-9) включается реле Р11 с последующим включением пускателей Р3 и Р4. Обмотки электродвигателя М1 подключаются через выпрямители Д1, Д2 к трансформатору Тр2, происходит динамическое торможение. После разряда конденсатора C1, C2 – отключается реле Р11, отключающее пускатели Р3, Р4 и М1 от тормозной цепи.

Читайте также:  Распределитель воздуха для компрессора

При переключении скоростей, если шестерни не входят в зацепление, применяют шаговый проворот ротора электродвигателя. Нажатием кнопки Кн4 "ПРОВОРОТ" включается пускатель Р4, по фазам 1C2-1CЗ протекает пониженное выпрямленное напряжение. Через сопротивление Р2 с задержкой включается реле Р11, отключающее пускатель Р4 и включающее Р3 – напряжение протекает по фазам 1C1-1C2. Такие переключения обеспечивают качание ротора и кинематики, что облегчает переключение скоростей.

Для защиты от перегрузки служат тепловые реле. Для нулевой защиты – катушки и контакты магнитных пускателей.

Установочный чертеж сверлильного станка 2Н135

Установочный чертеж сверлильного станка 2Н135

Приемы сверления труднообрабатываемых сплавов

К числу труднообрабатываемых сплавов относятся жаропрочные, титановые нержавеющие и т. п. стали. При сверлении их стандартным сверлом образуется сильно деформированная заклинивающаяся в канавках сверла ленточная стружка, вызывающая возникновение больших сил резания. Это влечет за собой увеличение вибраций сверла, вредно сказывающееся на состоянии его режущих кромок, которые быстро затупляются. Поэтому труднообрабатываемые сплавы нужно сверлить с учетом следующих рекомендаций:

  • 1. Применять специальные укороченные (по сравнению со стандартными) сверла, длина которых не должна превышать их диаметр более чем в 4—5 раз.
  • 2. Не применять сверла, укороченные в результате переточки стандартных сверл. Укорочение стандартного сверла приводит к увеличению длины поперечной режущей кромки вследствие того, что толщина перемычки возрастает по мере приближения к хвостовику.
  • 3. При отсутствии специальных укороченных сверл можно на стандартные сверла надевать и закреплять жесткие разрезные втулки с внутренним диаметром, равным диаметру сверла, и наружным, равным 35..60 мм. Втулка должна быть закреплена вплотную к торцу патрона или шпинделя станка. Длина втулки зависит от длины сверла, но желательно, чтобы часть сверла, выступающая из втулки, по длине не превышала диаметр сверла более чем в 5..6 раз.
  • 4. Чтобы повысить стойкость сверла, ширину его направляющих ленточек надо уменьшить до 0,2..0,4 мм, задний угол увеличить до 12° и применять двойную заточку.
  • 5. Чтобы предотвратить заклинивание стружки, следует на задней поверхности сверла прорезать стружкоделительные канавки (рис. 86), разделяющие стружку по ширине на несколько частей; это улучшает условия отвода ее из отверстия.
  • 6. Чтобы при выходе из отверстия стружка не наматывалась на сверло, применяют специальный стружкодробитель, представляющий собой конический колпачок, закрепляемый на сверле. Стружка, упираясь в колпачок, ломается на короткие спирали.
  • 7. Сверление вести только с применением смазочно-охлаждающих жидкостей. Для жаропрочных сплавов рекомендуется 50%-ная эмульсия или водный раствор хлористого бария с добавкой 1%-ного нитрата натрия, для титановых сплавов — касторовое и осерненное масла, олеиновая кислота или ее смеси.

Вертикально-сверлильный станок 2Н135. Видеоролик.

В данной статье будет рассмотрен один из эталонных образцов советских вертикально-сверлильный установок – станок 2Н135.

Стационарный вертикально-сверлильный агрегат 2Н135

Мы изучим паспорт данного агрегата, его конструкционные особенности и технические характеристики, также будет рассмотрена электрическая схема и кинематическая схема устройства.

1 Функциональность и сфера применения

Вертикально-сверлильный станок 2н135 был разработан силами инженеров Одесского конструкторского бюро промышленных установок.

Во времена СССР данный агрегат, собиравшийся на Стерлитамакском станкостроительно заводе, считался наиболее технологичным и надежным оборудованием для мелкой промышленности и единичного производства.

Технические характеристики данного устройства позволяют выполнять на нем такие функциональные операции как сверление, развертывание, зенкование, зенкерование и нарезание резьбы. Станок 2Н135 дает возможность оператору точно выбирать режим подачи сверла и количество оборотов, что позволяет оптимально подстроить устройство для работы с любыми материалами.

Мощность силового агрегата, составляющая, как свидетельствует паспорт, 4 кВт, дает возможность станку 2н135 эффективно справляться даже с деталями из твердосплавной стали с большим содержанием углеродов.

Широкая популярность данного оборудования в мелкопромышленном и бытовом использовании стала причиной появления большого количества разнообразных модификаций. Рассмотрим основные из них:

Эксплуатирующиеся станки 2Н135

  • 2Н135К – вертикально-сверлильный станок координатного типа, который оборудован крестовой рабочей поверхностью;
  • 2Е135А – сверлильный станок оснащенный системой автоматической подачи шпинделя. Оператор станка управляет оборудованием с помощью кнопочного управления;
  • 2Н135-1 – от оригинальной модели данный станок отличается лишь наличием поворотного стола круглой формы, который способен вращаться вокруг несущей колонны;
  • 2Н135Н – вертикально-сверлильный станок многопозиционного типа, оператор имеет возможность свободного перемещения функциональных элементов устройства вокруг оси несущей колонны;
  • 2Н135-С – паспорт устройства говорит, что данный агрегат аналогичен базовой модели во всем, за исключением фланцевой пиноли. Данная модернизация дает возможность устанавливать рабочую головку одновременно на несколько шпинделей;
  • 2Н135Ф2 – сверлильный станок, оборудованный ЧПУ (числовое программное управление). Самая современная модификация 2Н135, которая также снабжена револьверной головкой и крестовой рабочей поверхностью.

1.1 Конструкционные особенности

Несущая колонна агрегата выполнена в виде монолитной чугунной конструкции. Регулировка положения рабочего стола по несущей колонне выполняется оператором вручную, посредством отжима фиксирующего элемента и поворота регулирующего штурвала. Для перемещения рабочей поверхности на колонне предусмотрены специальные направляющие.

Опорная плита также выполнена из чугуна. Плита имеет пустотелую форму, внутри которой расположен резервуар для хранения охлаждающей жидкости, фильтрующее устройство и отстойник для механических загрязнений.

За подачу охлаждающей жидкости отвечает электронасос мощностью 120 Ватт, который расположен на поверхности опорной колонны. Подача жидкости выполняется через систему трубок, подводящих воду непосредственно к сверлу.

Конструкционная схема станка 2Н135

Силовой агрегат вертикально-сверлильного станка 2Н135 расположен поверх основного корпуса, в котором размещена коробка передач и шпиндельный блок. Кинематическая схема станка 2Н135 довольно простая: коробка скоростей и силовой агрегат соединяются посредством прямого вала.

Сама коробка скоростей способна выдавать двенадцать частот оборотов шпинделя. Регулировка скорости выполняется вручную, с помощью регулировки ремней натяжения. Рукоять для механической регулировки скоростей расположена на фронтальной части сверлильной головы.

Также на фронтальную панель вынесен датчик масла. Смазка функциональных элементов агрегата выполняется автоматическом режиме с помощью плунжерного насоса, оператору лишь необходимо отслеживать по датчику наличие необходимого количества масла.

Вертикально-сверлильный станок 2Н135 оборудован ручной системой подачи шпинделя. Данная система состоит из регулировочного штурвала, червячной передачи, кулачковой и обгонно-храповой муфты, лимба, и горизонтального вала с реечной шестерней.
к меню ↑

2 Технические характеристики

Хорошие технические характеристики данного агрегата делают его вполне приемлемым вариантом недорогого вертикально-сверлильного станка даже в условиях сегодняшнего дня.

На промышленных предприятиях, либо в мастерских народных умельцев, нередко можно встретить прошедший капитальный ремонт 2Н135, в приличном внешнем и функциональном состоянии, выпущенный свыше 30-ти лет назад.

Основными характеристиками любых вертикально-сверлильных станков, от которых непосредственно зависит их функциональность, являются максимальный диаметр сверления, ход шпинделя, количество оборотов в минуту, максимальное расстояние между шпинделем и рабочей поверхностью, и размеры последней.

Давайте посмотрим паспорт 2Н135 и разберемся, чем в этом плане примечателен данный вертикально-сверлильный станок.

Коробка скоростей вертикально сверлильного станка 2Н135

Читайте также:  Инструмент для регулировки карбюраторов бензопил

Данный сверлильный агрегат, как свидетельствует паспорт, способен просверливать в стали, соответствующей стандарту ГОСТ 1050-74, отверстия до 35 миллиметров.

При этом вылет шпинделя составляет 30 см, а максимально возможный подъем над рабочей поверхностью – 250 см, что позволяет обрабатывать заготовки, обладающие большими размерами.

Остальные характеристики шпинделя следующие:

  • расстояние от верхней точки шпинделя до рабочего стола: от 30 до 750 мм;
  • расстояние от верхней точки шпинделя до опорной плиты: от 700 до 1120 мм;
  • за один полный поворот управляющего колеса шпиндель перемещается на 122,46 мм;
  • диапазон рабочих оборотов шпинделя, как свидетельствует паспорт, составляет от 31,5 до 1400 об/мин;
  • количество доступных регулировок скорости шпинделя – 12 шт.

Массо-габаритные характеристики самого вертикально-сверлильного станка 2Н135:

  • высота агрегата при максимальном подъеме шпинделя – 253,5 см;
  • ширина агрегата – 83,5 см;
  • длина агрегата – 103 см;
  • масса станка – 1200 килограмм;
  • размеры поверхности рабочего стола – 45×50 см;
  • максимальный ход регулировки стола по вертикальной оси – 30 см.

Технические характеристики силового агрегата станка 2Н135:

  • станок оборудован электромотором 4А1001.4 мощностью 4 кВт;
  • для работы мотора требуется подключение к трехфазной электросети 380/220 Вольт;
  • в системе жидкостного охлаждения установлен электронасос типа Х14-22М, мощностью в 0,12 кВ, который способен перекачивать 22 литра охлаждающей жидкости в минуту.

Касаемо поверхности рабочего стола: на ней установлены три пазовые крепления Т-образной формы для дополнительного оборудования согласно ГОСТ 1574.

Электронная схема станка 2Н135

2.1 Сильные и слабые стороны станка

К неоспоримым преимуществам данного агрегата можно отнести выносливость, долговечность и простой ремонт.

Не каждый станок, появившийся свыше 30-ти лет назад, может вполне успешно заменять современное сверлильное оборудование.

Безусловно, 2Н135 уступает качественным вертикально-сверлильным станкам от хороших производителей по многим параметрам, это и удобство работы, так как эргономичность новых агрегатов намного лучше, и точность сверления, и скорость выполнения операций.

Однако если вы выбираете сверлильный станок для гаражного использования либо небольшого производства с оглядкой та три фактора: функциональность, надежность и минимальная стоимость, то за сопоставимые деньги, вряд ли можно найти вариант лучше, чем 2Н135.

Сверлильный станок 2Н135

Данный станок, как и все оборудование, сошедшее с конвейеров Стерлитамакского завода, собран на совесть.

И есть все основание полагать, что при должном уходе он качественно проработает ещё не один год.

Отсутствие каких-либо пластиковых деталей, к использованию которых в целях удешевление конструкции прибегают нынешние производители, гарантирует то, что ремонт станка можно будет осуществить при любой поломке.

Сам ремонт обойдется вам в сущие копейки, поскольку комплектующими данного оборудования рынок наполнен сверх меры.

Более того, схема конструкции, кинематическая схема и электросхема станка в свободном доступе представлена в интернете, и в случае необходимости вы сможете изготовить необходимую деталь собственноручно.
к меню ↑

2.2 Обзор вертикально-сверлильного станка 2Н135 (видео)

5.1. Основные типы сверлильных станков

Сверлильные станки предназначены для сверления сквозных и глухих отверстий в сплошном материале, рассверливания имеющихся отверстий на больший диаметр, зенкерования, развертывания, цекования, зенкования, нарезания внутренней и наружной резьбы и др.

Существуют следующие типы сверлильных станков.

1. Одношпиндельные настольно-сверлильные станки для обработки отверстий малого диаметра. Станки широко применяют в приборостроении. Шпиндели этих станков вращаются с большой частотой.

2. Вертикально-сверлильные станки применяют преимущественно для обработки отверстий в деталях сравнительно небольшого

размера. Для совмещения осей обрабатываемого отверстия и инструмента на этих станках предусмотрено перемещение заготовки относительно инструмента.

3. Радиально-сверлильные станки используют для сверления отверстий в деталях больших размеров. На этих станках совмещение осей отверстий и инструмента достигается перемещением шпинделя станка относительно неподвижной детали.

4. Многошпиндельные сверлильные станки обеспечивают значительное повышение производительности труда по сравнению с одношпиндельными станками.

5. Горизонтально-сверлильные станки для сверления глубоких отверстий.

К группе сверлильных станков можно также отнести центровальные станки, которые служат для получения в торцах заготовок центровых отверстий. Основными размерами сверлильных станков являются наибольший условный диаметр сверления, размер конуса шпинделя, вылет шпинделя, наибольший ход шпинделя, наибольшее расстояние от торца шпинделя до стола и до фундаментной плиты и др.

5.2. Устройство вертикально- и радиально-сверлильных станков

Наибольшее распространение в промышленности получили вертикально-сверлильные станки.

На рис. 22 показан внешний вид станка 2Н135-1.

На станине 4 вертикально-сверлильного станка размещены его основные части. Станина имеет вертикальные направляющие, по которым перемещается «плавающий» повортно-передвижной стол 2 и сверлильная бабка 6, несущая шпиндель 5 и электродвигатель. Управление коробками скоростей и подач осуществляется рукоятками, а ручная подача – штурвалом. Глубина обработки контролируется по лимбу. Электрооборудование у данного станка вынесено в отдельный шкаф. Фундаментная плита 1 служит опорой станка.

Продольное перемещение стола и поперечное перемещение салазок происходят по направляющим качения. Зажим стола осуществляется посредством рукоятки. На продольном столе смонтирован поворотный стол. На станках, у которых нет «плавающего» стола для совмещения центров инструмента и обрабатывающего отверстия, перемещают заготовку вручную.

Рис. 22. Внешний вид станка 2Н135-1

Наличие на станке 2Н135-1 «плавающего» стола позволяет вести многокоординатную обработку деталей по кондуктору, по разметке или по предварительно настроенным кулачкам без ее перезакрепления. При обработке по кулачкам поиск координат обрабатываемых отверстий осуществляется по схеме расположения отверстий с помощью механизма поиска координат. Кулачки настраиваются по шаблону или по разметочной детали. На станке можно сверлить отверстия с наибольшим диаметром 35 мм. Вылет шпинделя станка 300 мм, угол поворота стола 360 о .

Радиально-сверлильные станки предназначены для выполнения тех же операций, что и вертикально-сверлильные, но изготовления деталей больших размеров, как, например, корпусные детали.

Рис. 23. Внешний вид радиально-сверлильного

станка модели 2554

На рис. 23 приведен внешний вид радиально-сверлильного станка модели 2554. На фундаментной плите 1 установлена неподвижная колонна 2, на которую надета поворотная гильза 4. Последняя после поворота зажимается гидрозажимом 3 на колонне 2. На гильзе имеются вертикальные направляющие, по которым перемещается траверса (рукав) 5. На траверсе смонтирована сверлильная головка 6, которая может перемещаться вдоль траверсы и поворачиваться вместе с ней и поворотной гильзой на 360 о . Обрабатываемая деталь устанавливается на подставке (столе) или непосредственно на фундаментной плите или на полу. Наибольший диаметр сверления 50 мм, вылет шпинделя 350…1600 мм, наибольшее вертикальное перемещение траверсы 1000 мм.

Сверлильная головка конструктивно выполнена, как и на вертикально-сверлильном станке, но имеет больше частот вращения и число подач, что позволяет применять более рациональные режимы резания. Сосредоточение органов управления на сверлильной головке, наличие гидрозажима колонны, сблокированного с зажимом сверлильной головки, автоматизация зажима траверсы на колонне, наличие системы предохранительных устройств, исключающих поломку станка при перегрузке, позволяет максимально сократить вспомогательное время и обеспечить высокую производительность.

Ссылка на основную публикацию
Adblock detector