Содержание
Температура жала паяльника зависит от многих факторов.
- Входного напряжения сети, которое не всегда стабильно;
- Рассеивания тепла в массивных проводах или контактах, на которых производится пайка;
- Температуры окружающего воздуха.
Для качественной работы требуется поддерживать тепловую мощность паяльника на определенном уровне. В продаже есть большой выбор электроприборов с регулятором температуры, однако стоимость таких устройств достаточно высокая.
Еще более продвинутыми являются паяльные станции. В таких комплексах расположен мощный блок питания, при помощи которого можно контролировать температуру и мощность в широких пределах.
Цена соответствует функциональности.
А что делать, если паяльник уже имеется, и покупать новый с регулятором не хочется? Ответ простой – если вы умеете пользоваться паяльником, сможете изготовить и дополнение к нему.
Регулятор для паяльника своими руками
Эта тема давно освоена радиолюбителями, которые как никто другой заинтересованы в качественном инструменте для паяния. Предлагаем вам несколько популярных решений с электросхемами и порядком сборки.
Двухступенчатый регулятор мощности
Такая схема работает на устройствах с питанием от сети переменного напряжения 220 вольт. В разрыв цепи одного из питающих проводников, параллельно друг другу подключается диод и выключатель. Когда контакты выключателя замкнуты – паяльник запитан в стандартном режиме.
При размыкании – ток проходит через диод. Ели вы знакомы с принципом протекания переменного тока – работа устройства будет понятно. Диод, пропуская ток лишь в одном направлении – отсекает каждый второй полупериод, понижая напряжение вдвое. Соответственно, в два раза снижается мощность паяльника.
В основном, такой режим питания используется при длительных паузах во время работы. Паяльник находится в дежурном режиме, и наконечник не сильно охлаждается. Для приведения температуры к 100% значению, включаем тумблер – и через несколько секунд можно продолжать пайку. При снижении нагрева меньше окисляется медное жало, продлевая срок службы прибора.
Двухрежимная схема на маломощном тиристоре
Данный регулятор напряжения для паяльника подходит к маломощным устройствам, не более 40 Вт. Дли силового управления, используется тиристор КУ101Е (на схеме – VS2). Несмотря на компактные размеры и отсутствие принудительного охлаждения – он практически не греется в любом режиме.
Тиристором управляет схема из переменного резистора R4 (использован обычный СП-04 сопротивлением до 47К) и конденсатора С2 (электролит 22мф).
Принцип работы следующий:
- Режим ожидания. Резистор R4 выставлен не максимальное сопротивление, тиристор VS2 закрыт. Питание паяльника осуществляется через диод VD4 (КД209), снижая напряжение до 110 вольт;
- Рабочий режим с регулировкой. В среднем положении резистора R4, тиристор VS2 начинает открываться, частично пропуская через себя ток. Переход в рабочий режим контролируется с помощью индикатора VD6, который зажигается при напряжении на выходе регулятора 150 вольт.
Далее можно плавно поднимать мощность, увеличивая напряжение до 220 вольт.
Печатную плату изготавливаем по размеру корпуса регулятора. В предложенном варианте использован корпус от зарядного устройства для мобильника.
Компоновка очень простая, можно разместить в корпусе меньшего размера. Никакой вентиляции не требуется, радиокомпоненты практически не греются.
Собираем устройство в корпусе, ручку резистора выводим наружу.
Классический советский 40 ваттный паяльник легко превращается в паяльную станцию, которая работает устойчивей, чем все китайские аналоги.
Регулятор мощности на симисторе
Вариант так же относится к простым схемам, рассчитанным на приборы небольшой мощности. Собственно, регулируемый паяльник, как правило, нужен для работы с микросхемами или SMD компонентами. А в этом случае большая мощность будет излишней.
Схемное решение позволяет плавно регулировать напряжение практически от нуля до максимального значения. Речь идет о 220 вольтах. Силовым управляющим элементом служит тиристор VS1 (КУ208Г). Элемент HL-1 (МН13) придает графику управления линейную форму и выступает в роли индикатора. Набор резисторов: R1 – 220k, R2 – 1k, R3 – 300Ом. Конденсатор С1 – 0,1мк.
Схема на мощном тиристоре
Если требуется подключить к регулятору мощный паяльник, силовой блок-схемы собирается на тиристоре КУ202Н. При нагрузке до 100Вт охлаждение ему не требуется, поэтому усложнять конструкцию радиатором не придется.
Схема собрана на доступной элементной базе, детали могут просто быть в ваших запасниках.
Принцип работы:
С анода тиристора VS1 снимается напряжение питания паяльника. Собственно это и есть регулируемый параметр, контролирующий температуру. Схема управления тиристором реализована на транзисторах VT1 и VT2. Питание управляющего модуля осуществляет стабилитрон VD1 вместе с ограничительным резистором R5.
Выходное напряжение блока управления регулируется с помощью переменного резистора R2, который собственно и задает параметры мощности подключенного паяльника.
В закрытом состоянии тиристор VS1 не пропускает ток, и паяльник не греется. При вращении управляющего резистора R2 блок питания выдает все большее управляющее напряжение, открывая тиристор.
Схема монтажа состоит из двух частей.
Блок управления удобнее собрать на протравленной плате, чтобы его микрокомпоненты были сгруппированы без проводного соединения.
А вот силовой модуль из тиристора и его обслуживающих элементов располагаются отдельно, равномерно распределяясь по корпусу.
«На коленке» собранная схема выглядит так:
Перед упаковкой в корпус, проверяем работоспособность при помощи мультиметра.
При вращении резистора R2 напряжение на входе в паяльник должно плавно изменяться. Схема помещается в корпусе накладной розетки, что делает конструкцию очень удобной.
Дно розетки закрывается подходящей крышкой. Идеальный вариант – не просто накладная, а герметичная уличная розетка. В данном случае выбран первый вариант.
Получается своеобразный удлинитель с регулятором мощности. Пользоваться им очень удобно, на паяльнике нет никаких лишних приспособлений, и ручка регулятора всегда под рукой.
Регулятор на микроконтроллере
Если вы считаете себя продвинутым радиолюбителем, можно собрать достойный лучших промышленных образцов, регулятор напряжения с цифровой индикацией. Конструкция представляет собой полноценную паяльную станцию с двумя выходными напряжениями – фиксированным 12 вольт и регулируемым 0-220 вольт.
Низковольтный блок реализован на трансформаторе с выпрямителем, и особой сложности в изготовлении не представляет.
Блок управления переменной величиной напряжения выполнен на контроллере PIC16F628A.
Подробности схемы и перечисление элементной базы ни к чему, все видно на схеме. Силовое управление выполнено на симисторе ВТ 136 600. Управление подачей мощности реализовано с помощью кнопок, количество градаций – 10. Уровень мощности от 0 до 9 показывается на индикаторе, который также подключен к контроллеру.
Генератор тактов подает импульсы на контроллер с частотой 4 МГц, это и есть скорость работы программы управления. Поэтому контроллер моментально реагирует на изменение входного напряжения, и стабилизирует выходное.
Схема собирается на монтажной плате, на весу или картонке такое устройство не спаять.
Для удобства станцию можно собрать в корпусе для радиоподелок, или в любом другом, подходящего размера.
В целях безопасности, розетки на 12 и 220 вольт размещаются на разных стенках корпуса. Получилось надежно и безопасно. Такие системы отработаны многими радиолюбителями и доказали свою работоспособность.
Как видно из материала, можно самостоятельно изготовить регулируемый паяльник с любыми возможностями и на любой кошелек.
При пайке радиокомпонентов сетевым паяльником (
220 В) часто требуется оперативное изменение его температуры и подводимой к нему мощности. Простейшее решение, которым часто пользуются радиолюбители, состоит из последовательного подключения к паяльнику диода, который, при необходимости повышения температуры, закорачивается тумблером. Такое решение не всегда приемлемо, особенно когда имеется необходимость пайки на плате планарных микросхем и соединяющих или подключаемых к плате проводников. Использование с этой целью паяльной станции значительно облегчает процесс пайки, но такая станция обходится довольно дорого. В настоящей статье рассмотрены схемы регуляторов на интегральном таймере 555, позволяющие осуществить плавную регулировку температуры паяльника в широких пределах.
В технической литературе и Интернете можно встретить множество схем регулирования температуры паяльника, принцип действия которых основан на регулировании тока через паяльник с помощью тиристора или симистора.
В таких схемах среднее значение тока паяльника зависит от ручного регулирования момента его включения в каждый полупериод напряжения сети. Известны также регуляторы, в которых через регулируемые промежутки времени исключаются целые полупериоды и периоды питающего напряжения. Все эти устройства отличаются диапазонами регулировки и, в большинстве случаев, имеют довольно большие габариты.
Для регулирования температуры паяльника в широких пределах нами испытаны и предлагаются для использования схемы регуляторов, показанные на рис.1 и рис.2. Основой этих схем являются генератор с широтно-импульсной модуляцией (ШИМ), реализованный на интегральном 555-м таймере, который управляет выходным ключом.
Рассмотрим работу такого генератора по схеме рис.1. На таймер (выводы 4 и 8) подается напряжение питания. В момент включения на выводе 3 таймера появляется напряжение, практически равное напряжению питания. Это напряжение через открытый диод VD4, резистор R2 и нижнюю часть потенциометра R1 постепенно заряжает конденсатор С3. Когда напряжение на конденсаторе достигнет значения 2/3 напряжения питания, компараторы таймера устанавливают на выходе 3 низкий уровень напряжения (практически 0 В). При этом диод VD4 закрывается и ключевой транзистор внутри таймера закорачивает вывод 7 на «землю». Начинается разряд конденсатора через верхнюю часть потенциометра Р1 и резистор Р3. Когда оно снизится до трети напряжения питания, то на выходе 3 вновь устанавливается высокий уровень напряжения (близкий к напряжению питания), и процесс перезаряда конденсатора С3 повторяется. Пороги срабатывания компараторов таймера определяются его внутренним делителем напряжения. Из [1] известно, что время заряда конденсатора С3 от значения от 1/3 до 2/3 напряжения питания равно
Т = t1 + t2 = 0,69 • С3 • (2 • R3 + R1). Следовательно, период и частота генератора практически не зависят от положения движка потенциометра. Коэффициент заполнения выходных импульсов таймера зависит от положения движка и равен
D = t1/Т = (R3 + α• R1) / (2 • R3 + R1). Минимальное значение коэффициента заполнения выходных импульсов получается в нижнем положении движка Р3, а максимальное — в верхнем положении движка этого потенциометра. Таким образом, предложенная схема, не изменяя частоты, обеспечивает плавное изменение ширины импульсов практически от нуля до полного их заполнения и может применяться не только в устройствах для регулирования температуры.
При разработке схем регулирования основное внимание обращено на минимальное потребление, простоту и дешевизну регуляторов. В зависимости от имеющегося в наличии силового транзистора предлагаются две схемы регулирования. На рис.1 показана схема на высоковольтном биполярном транзисторе VT1 и таймере NE555 (КР1006ВИ1). Напряжение сети 220 В выпрямляется диодным мостиком VD1 и подается на паяльник. Для получения напряжения питания таймера использован гасящий конденсатор С1, стабилитрон VD2 и однополупериодный выпрямитель на диоде VD3. Так как суммарный ток, потребляемый таймером и цепью базы транзистора VT1, довольно большой, то использование вместо конденсатора С1 гасящего резистора нерационально из-за его нагрева. Необходимое сглаживание питающего напряжения осуществляется конденсатором С2. Транзистор VT1 работает как ключ, поэтому он не требует охлаждающего радиатора.
На рис.2 показана схема регулирования на силовом полевом транзисторе с рабочим напряжением 400 В и током 4,5 А типа IRF730 (КП726А). В схеме можно применить любой полевой транзистор с таким же или большим рабочим напряжением. Так как полевой транзистор управляется напряжением, то ток, потребляемый таймером, не превышает 8 мА. Поэтому в схеме питания таймера вместо конденсатора можно применить гасящие резисторы. На схеме рис.2 гасящие резисторы — это R1 и R2 мощностью 2 Вт. Показанное на схеме включение конденсатора фильтра С1 позволяет уменьшить до минимума пульсации питающего напряжения, поэтому отпадает необходимость шунтирования стабилитрона VD2 конденсатором большой емкости. В схеме можно применить любой маломощный стабилитрон на напряжение 9,1 В. Если потребуется увеличить диапазон регулировки напряжения паяльника в сторону увеличения, то можно подключить к диодному мосту конденсатор С3.
Существует также интегральный таймер 7555 на полевых транзисторах, который является полным аналогом таймера 555, но его ток потребления не превышает 0,5 мА. Этот таймер также испытан нами в приведенных схемах. Простая замена таймера в схеме рис.1 заметного эффекта не дает, кроме уменьшения емкости конденсатора С1 до 0,51 мкФ. Если биполярный транзистор VT1 заменить полевым, то можно дополнительно уменьшить значение емкости С1 и также уменьшить емкость С2 до 20 мкФ. Замена таймера в схеме рис.2 позволяет увеличить значения сопротивления каждого из резисторов R1 и R2 до 33 кОм и уменьшить их мощностью до 0,5 Вт, поэтому такой схеме следует отдать предпочтение.
В заключение следует отметить, что предложенная схема регулирования имеет очень широкий диапазон регулирования: практически от нуля и до напряжения сети. Если применить для регулирования тока нагрузки потенциометр с линейной зависимостью сопротивления от угла поворота движка (тип А), то также линейно будет изменяться и ток разогрева. Если необходимо ограничить диапазон регулирования со стороны минимальной температуры, то для этого достаточно увеличить величину резистора R4 (рис.2). С регулятором также можно использовать низковольтный паяльник, например, на 127 В. Для исключения его перегрева следует увеличить сопротивление резистора R5. Включение параллельно выходу диодного моста небольшой емкости С3 увеличивает ток через паяльник, что можно использовать для его быстрого разогрева. Полевые силовые транзисторы рассчитаны на большие токи, поэтому без изменения схемы мощность паяльника можно увеличить в несколько раз.
Литература
- Титце У., Шенк К. Полупроводниковая схемотехника. 12-е изд. Том 1: Пер. с нем. — М.: ДМК ПРЕСС, 2008.
Автор: Александр Алексенцев, Роман Проць, г. Львов
Использование паяльника для соединения проводом, микросхем, запаивания различных деталей и других операций, требует соблюдения точности параметров. Для многих из процедур нужно брать новый паяльник с требуемой мощностью, что далеко не всегда удобно на практике. Регулятор мощности для паяльника создает более удобные условия работы, так как позволяет изменять параметры работы инструмента, не меняя сам паяльник.
Регулятор температуры паяльника далеко не всегда идет в комплекте с устройством. Наличие отдельного самостоятельного элемента управления оказывается более удобным, так как его можно использовать с другими моделями паяльников. Во многих случаях их можно сделать своими руками, если есть подходящие инструменты и материалы. Это не так уж сложно, тем более, что есть практически готовые модели на разных элементах управления.
Регулятор нагрева паяльника выполняется по достаточно простой схеме. При самостоятельном изготовлении есть возможность подобрать нужные параметры и сделать уникальное устройство. Здесь многое зависит от выбранного элемента, так как параметры максимальной мощности, стабилизация напряжения и прочие дополнения поддерживаются не всеми вариантами компонентов схемы.
Необходимые материалы и инструменты 
Для создания регулятора напряжения для паяльника понадобится:
- Паяльник;
- Нож;
- Отвертка;
- Элементы для составления схемы;
- Дрель;
- Компоненты для корпуса устройства.
Элементы для схемы могут отличаться в зависимости от выбранного варианта. Чаще всего ими становятся тиристоры, симисторы, сопротивления, триоды и другие компоненты различных марок.
Регулировщик температуры для паяльника своими руками 
Регулятор температуры жала можно подобрать в магазине и затем соединить его своими руками с паяльником. Сначала следует разрезать провод идущий от инструмента. Оба конца этого провода подключаются к выводам регулятора. Тот отрезок, который остался с вилкой, прикручивается ко входу в плату, а второй – к выходу.
Плату регулятора после соединения стоит поместить в пластиковый корпус, чтобы она была в большей безопасности при эксплуатации. Главное, чтобы в корпусе были отверстия под ручки регулятора. Это позволит удобно менять рабочие параметры инструмента, в зависимости от потребностей технологии пайки.
Регулятор мощности на симисторе 
Чтобы своими руками создать регулятор мощности паяльника на симисторе ВТА16, следует четко придерживаться инструкций по производству платы и делать все по схеме. Это сложнее, чем самостоятельно устанавливать уже готовую модель, но при должном опыте пайки это вполне возможно. Схема регулятора паяльника выглядит следующим образом:
Схема регулятора мощности для паяльника 220 В здесь очень простая. При производстве платы можно использовать наиболее простые методы:
- Следует взять кусок текстолита и вырезать из него деталь, подходящую по размерам будущей схемы;
- Поверхность материала нужно зашкурить и обезжирить;
- Вышеуказанную схему можно нарисовать на вырезанном куске текстолита обыкновенным маркером для дисков;
- Далее нужно протравить схему, для чего используется хлорное железо (действовать с ним следует очень аккуратно);
- По окончании процедуры нужно промыть плату и высушить ее;
- Далее нужно протереть плату спиртовым раствором канифоли и залудить дорожки.
Для тех, кому вариант с травлением хлорным железом может показаться очень сложным и небезопасным, можно воспользоваться вместо него раствором перекиси водорода, лимонной кислоты и соли. Воду в составе не стоит использовать. На протравливание этим раствором может уйти около часа.
Для того, чтобы создать регулятор мощности для паяльника на симисторе с индикацией, стоит воспользоваться другой схемой:
Здесь имеется несколько отличий. В схеме присутствуют диоды VD1 и VD2. Первый является обыкновенным диодом, а второй светодиодом. Такие схемы оказываются слишком большими, чтобы вставлять их в ручку паяльника, поэтому их используют вне корпуса инструмента.
Они могут быть выполнены не только с ВТ16, так как регулятор мощности для паяльника на симисторе ТС106 будет также хорошо работать, хотя и отличается по параметрам.»
Двухступенчатый переключатель мощности 
Если хочется создать наиболее простой вариант, то стоит рассмотреть варианты двухступенчатых регуляторов. У них наиболее простая схема и для нее можно легко подобрать материала из домашних вещей. Регулятор мощности для паяльника 220 В, который состоит из двух значений, зачастую позволяет переключаться между полной мощности и 50% от нее.
Схема устройства выглядит следующим образом:
Если цепь разомкнута, то ток проходит через первый диод. Напряжение на выходе будет составлять 110 В. Если цепь замкнуть, то ток идет через переключатель и тогда на выходе напряжение получается 220 В.
Диод должен подбираться под мощность паяльника.»
Благодаря простоте схемы, ее можно соединить с паяльником способом навесного монтажа. Для этого нужно параллельно припаять детали схемы. Далее они соединяются с цепью. Для изоляции и защиты от смещения все можно залить при помощи эпоксидной смолы. В ручке пальника, если устройство будет располагаться там, или в отдельном переключателе, нужно сделать отверстие для кнопки. Очень компактно получается создание схемы в корпусе переключателя от лампы. Если он будет располагаться на проводе самого паяльника, то это никак не станет мешать его работе.
Регулятор на маломощном тиристоре 
Можно создать регулятор мощности для паяльника на тиристоре КУ202. Это достаточно распространенный вариант, который легко можно сделать самостоятельно. Схема такого устройства выглядит следующим образом:
На схеме присутствуют резисторы R5 и R4. Они становятся делителями напряжения. Благодаря тому, что здесь используется чувствительный тиристор, понижение сигнала при помощи данных сопротивлений помогает в регулировке температуры. Как правило, более мощные модели тиристоров оказываются не столь чувствительными. Сборка схемы производится аналогично той, которая использовалась для симисторного регулятора.
Здесь стоит учитывать то, что возможность перегрева тиристора практически исключается. Слабые компоненты не подвержены перегреву, так что тут не нужны радиаторы охлаждения и прочие дополнительные компоненты. Данная схема может быть соединена последовательно с проводом, выходящим из паяльника, и помещена в коробок без розетки.
Регулятор мощности на микроконтроллере 
Самостоятельно собирать такую схему может оказаться достаточно сложно. Лучше использовать некоторые готовые компоненты. Схема для этого выглядит следующим образом:
Здесь можно воплотить индикацию для создания схемы пригодятся такие компоненты:
- Микроконтроллер;
- Резисторы;
- Тактовые кнопки;
- Светодиод для индикации;
- Панель для микросхемы;
- Стабилизированный источник питания.
Чтобы устройство показывало не только сигнал светодиода, а и процентное изменение мощности, в схеме следует использовать числовой индикатор. Несмотря на то, что подобные вещи можно сделать своими руками, регулятор с микроконтроллерам подходит для профессионального использования при пайке.
Заключение 
Огромное разнообразие вариантов для создания регулятора мощности своими руками помогает удовлетворить запросы практически всех людей, которые занимаются пайкой. Для тех, кто хочет сделать все максимально быстро и не вдаваться в подробности есть практически готовые варианты. Кому хочется максимального комфорта, могут использовать микроконтроллеры с точным отображением параметров. Средние по сложности варианты, в которых применяются тиристоры и симисторы, подойдут как новичкам, так и профессионалам. Хорошо сделанный регулятор не будет уступать по практичности тем моделям паяльников, в которых они встроены.