Принцип работы лодочного двухтактного мотора

Рабочий цикл двухтактного ДВС

Практически все отечественные подвесные моторы снабжены двигателями, работающими по двухтактной схеме. Проследим, как совершается рабочий цикл в двухтактном двигателе.

При движении поршня вверх от НМТ (нижней мертвой точки) в картере двигателя увеличивается разрежение и через впускное окно, расположенное в средней части картера, всасывается бензовоздушная смесь — происходит впуск (рис. 1, I). Достигнув верхней мертвой точки (ВМТ), поршень направляется вниз. Смесь в картере начинает сжиматься (рис. 1, III), т. к. к этому моменту впускное окно уже перекрыто (механизм управления впуском описан ниже). Когда верхняя кромка поршня дойдет до выпускного окна, камера сгорания соединится с атмосферой (однако выпуска не произойдет, потому что воспламенения смеси еще не было). Двигаясь дальше, верхняя кромка поршня открывает продувочное окно и смесь, предварительно сжатая в картере, устремляется в камеру сгорания.

После прохождения НМТ поршень снова движется вверх. В картере под поршнем начинается процесс формирования нового заряда для продувки, а в камере сгорания смесь в это время сжимается. Поршень, двигаясь вверх, перекрывает сначала продувочные окна, а затем выпускные окна — продувка заканчивается и начинается сжатие (рис. 1, II). В момент подхода поршня к ВМТ в запальной свече возникает искра, топливо воспламеняется и возросшее давление толкает поршень вниз — происходит рабочий ход (рис. 1, IV). Выпускные окна открываются — начинается выпуск, давление в камере сгорания падает. Отработанные газы улетают через выпускное окно в атмосферу, а после открытия продувочных окон поступающая через них свежая смесь выталкивает остатки отработанных газов — происходит продувка.

Система продувки

Если процессы сжатия, сгорания и расширения в двух и четырехтактных двигателях аналогичны, то очистка цилиндра от остаточных газов и наполнение его свежей смесью у них существенно различаются. В четырехтактном двигателе основная масса остаточных газов вытесняется поршнем при его ходе к ВМТ (верхней мертвой точке). В двухтактном двигателе отработанные газы вытесняются свежей смесью, предварительно сжатой в картере, при открытых продувочных и выхлопных окнах, т. е. продувка и выпуск происходят одновременно. При больших конструктивных преимуществах такая система очистки имеет и свои минусы: свежая смесь частью смешивается с остатками продуктов сгорания, а частью вылетает в атмосферу через выпускную систему. Чтобы свести к минимуму эти нежелательные явления при наилучшей очистке цилиндра от остаточных продуктов сгорания, конструкторами двухтактных двигателей разработаны различные системы продувки цилиндра.

Таких систем несколько: контурная, в которой поток продувочной смеси движется по контуру цилиндра, прямоточная с движением смеси от одного конца цилиндра к другому и др.

В настоящее время в двухтактных двигателях подвесных лодочных моторов повсеместно применяется возвратно-петлевая схема продувки. Здесь рабочая смесь направляется из нижней части цилиндра в верхнюю, описывает петлю и выталкивает отработавшие газы. Петлевая схема продувки конструктивно проста — это и определило ее выбор для лодочных и мотоциклетных двигателей, хотя она и характеризуется наличием не продутых зон в цилиндре в большей степени, чем прямоточная и контурная.

Конструкция двигателя

Конструктивно двигатель подвесного мотора (рис. 11) состоит из неподвижных деталей — цилиндров, головок, картера и подвижных — коленвала, поршней, шатунов, маховика (рис. 12).

Цилиндры двигателей выполняются из алюминиевого сплава в виде блока («Ветерок», «Нептун», «Вихрь», «Москва») либо каждый отдельно («Салют», «Привет-22») с залитыми или запрессованными гильзами из серого чугуна. Цилиндры со стороны ВМТ закрываются головкой, отливаемой из алюминиевого сплава в одном блоке или отдельно на каждый цилиндр.

Картеры двигателей отливаются из алюминиевого сплава и конструктивно выполняются с одним или несколькими разъемами в плоскости, перпендикулярной к оси коленвала («Салют», «Вихрь», «Нептун», «Привет-22»), по оси коленвала («Москва») или туннельного типа без разъемов («Ветерок»). В средней части картера («Вихрь», «Нептун», «Привет-22») расположен впускной канал, расходящийся на верхнюю и нижнюю кривошипные камеры, впуск смеси в которые производится через золотниковые шайбы, вращающиеся вместе с коленвалом (см. рис. 9). На двигателях с клапанным впуском («Ветерок», «Москва», «Прибой») к картеру крепится клапанная перегородка с пластинчатыми клапанами, открывающимися при образовании достаточного разрежения в кривошипной камере.

Коленвалы двигателей подвесных лодочных моторов изготовляются цельными при разъемных нижних головках шатунов («Ветерок», «Прибой», «Москва») или составными при неразъемных головках («Вихрь» «Нептун», «Привет-22», «Салют»). Разборные коленвалы двухцилиндровых двигателей состоят из двух кривошипов, соединяемых между собой с помощью оси («Нептун»), торцевых шлиц («Вихрь») или цанговым соединением («Привет-22»). На верхнем клапане коленвала предусматривается конус со шпонкой для посадки маховика. Нижний конец для соединения с вертикальным валом имеет отверстие со шлицами («Ветерок», «Москва», «Прибой», «Нептун») или квадратный хвостовик («Вихрь», «Привет-22», «Салют»). Коленвалы штампуются из легированной хромоникелевой стали.

Маховики двигателей подвесных лодочных моторов помимо основного назначения — уменьшения неравномерности вращения коленвала — используются для размещения магнитной системы магнето. В обод маховика заливаются («Ветерок», «Москва») или крепятся с помощью винтов («Вихрь», «Нептун», «Привет-22») постоянные магниты с полюсными наконечниками.

Шатуны штампуются из легированной стали. Их стержни выполняются двутаврового сечения, хорошо противостоящего изгибу. Разъемная кривошипная головка шатуна имеет крышку с фиксирующим изломом, соединяющуюся с телом шатуна двумя шатунными болтами. Неразъемная конструкция головки обеспечивает более высокие жесткость и надежность кривошипно-шатунного механизма, но вызывает необходимость замены всего узла (коленвала с шатуном) при износе или повреждении одной из деталей. Шатунные подшипники в двигателях подвесных лодочных моторов выполняются роликовыми или игольчатыми со свободными иглами («Ветерок», «Салют») или с сепаратором («Нептун», «Привет-22», «Вихрь», «Москва-25»). В поршневую (верхнюю) головку шатуна запрессовывается бронзовая втулка, служащая подшипником скольжения для поршневого пальца (кроме мотора «Привет-22» с игольчатым подшипником верхней головки шатуна).

Поршни отливаются из алюминиевых сплавов. Днище поршня в зависимости от типа продувки может быть выпукло-сферической формы или со специальным козырьком (дефлектором). Уплотнение зазора между цилиндром и поршнем производится двумя — тремя поршневыми кольцами, изготовляемыми из высокопрочного мелкозернистого чугуна. Для исключения проворачивания колец и поломок из-за попадания их замков в просветы окон кольца фиксируются общим или индивидуальными для каждого кольца стопорами.

Поршневые пальцы, как правило, плавающей конструкции — вращаются не только в верхней головке шатуна, но и в бобышках поршня. От перемещений в осевом направлении палец фиксируется двумя пружинными стопорными кольцами, устанавливаемыми по его концам в канавки бобышек поршня. Изготовляются поршневые пальцы из цементируемой низкоуглеродистой стали.

В систему питания и смесеобразования двигателей подвесных лодочных моторов входят топливный бак, гибкий соединительный топливный шланг с ручной подкачивающей грушей, топливный насос, карбюратор и соединительные шланги (рис. 13). Более просто устроена система питания маломощных одноцилиндровых подвесных лодочных моторов («Салют», «Стрела») со встроенным бензобаком и поступлением топлива самотеком. Карбюраторы поплавкового типа оборудованы системами и устройствами, обеспечивающими обогащение топливной смеси при пуске двигателя, работу в эксплуатационном диапазоне нагрузок и быстрый переход от малой нагрузки к полной, стабильность качественного состава смеси при полной нагрузке и экономичность. Карбюратор мотора «Салют-М» — с центральной поплавковой камерой и цилиндрическим золотником. Карбюраторы КЗЗБ («Ветерок-8Э») и КЗЗВ («Ветерок-123») — горизонтального типа, с боковым расположением поплавковой камеры — максимально унифицированы между собой и отличаются только размерами диффузора.

Читайте также:  Поплавок для насоса схема подключения

Карбюратор типа К36 — поплавкового типа с горизонтально расположенной камерой — используется на моторах «Нептун-23» (К36Л) и «Москва-25», «Москва-30» (К36Н). Карбюраторы моторов семейства «Вихрь» и мотора «Привет-22» — поплавкового типа с горизонтальным расположением поплавковой камеры. Они отличаются диаметром проходного сечения главного жиклера и диффузора, мм:

«Вихрь» «Вихрь-М» «Вихрь-30» «Привет-22»
Главный жиклер 1,2 1,25 1,5 1,2
Воздушный жиклер 0,52 0,52 0,52 0,52
Диффузор 25 25 26,5 25

В двигателях подвесных лодочных моторов системы питания и смазки совмещены — масло добавляется непосредственно в топливо и подается в двигатель по общей топливной системе. Смесь бензина с маслом распыливается в карбюраторе, смешивается и засасывается в картер, где масло оседает на поверхности деталей, покрывая их тонкой пленкой. Масляный туман, образующийся в картере при вращении кривошипа, смазывает шатунные и коренные шейки коленвала, подшипники верхних головок шатуна, поршневые пальцы, зеркало цилиндра.

Прочие агрегаты и системы подвесного мотора

Пусковое устройство подвесных лодочных моторов оборудуется механизмом с самоубирающимся шнуром. Можно выделить два конструктивных решения пускового устройства лодочных моторов: механизм верхнего расположения, в котором зацепление с маховиком производится посредством собачки или собачек, расположенных на шкиве-блоке («Вихрь», «Нептун», «Москва» (см. рис. 14), «Салют»), и механизм нижнего расположения, пусковая шестерня которого входит в зацепление с зубчатым ободом маховика («Ветерок» (см. рис. 15), «Привет-22», «Прибой»). В качестве аварийного на всех моторах предусмотрен запуск с помощью шнура, наматываемого на верхнюю часть маховика. Лодочные моторы «Вихрь-30» и «Москва-25АЭ» («Москва-ЗОЭ») снабжены электрозапуском. В моторе с электрозапуском «Вихрь-30» система электропитания дополнена аккумуляторной батареей 6СТ42 (6СТ45), выпрямителем для подзарядки аккумуляторной батареи и электростартером.

Система охлаждения отечественных подвесных лодочных моторов — водяная, проточная, состоящая из водозаборника, насоса и трубопроводов (рис. 16). Охлаждающая вода подается в двигатель насосом, в качестве которого используется преимущественно помпа коловратного типа. Коловратная помпа состоит из корпуса и резиновой крыльчатки, в ступицу которой залита латунная втулка («Ветерок», «Москва», «Нептун», «Вихрь»). На моторах «Привет-22» и «Салют-М» установлен водяной насос бесконтактного вихревого типа.

Подвеска мотора

Подвеска обеспечивает крепление мотора к транцу лодки, поворот относительно вертикальной оси для изменения направления движения и откидывание при задевании подводной части за препятствия (рис.4). Для удержания мотора в откинутом состоянии при длительных остановках и движении на веслах в подвеске имеется подпружиненный упор. Для установки мотора под нужным углом относительно транца в зависимости от загрузки лодки и угла наклона транца подвеска снабжена устройством, позволяющим ступенчато регулировать этот угол. У моторов с реверс-редукторами имеются устройства, исключающие откидывание мотора при работе на задний ход.

Подвеска служит для легкосъемного крепления подвесного мотора на транце мотолодки в вертикальном положении. Она обеспечивает поворот мотора вокруг вертикальной оси при маневрировании и поворот вокруг горизонтальной оси для откидывания его на стоянке или при ударе на ходу о препятствие.

Подвеска состоит из двух кронштейнов — правого и левого, соединенных двумя шпильками. При помощи двух зажимных резьбовых болтов, на концах которых установлены опорные шайбы, кронштейны жестко закрепляют на транце. Мотор соединен с кронштейнами резиновыми амортизаторами, чем достигается значительное снижение передачи вибрации и шума мотора на корпус лодки.

Подвеска позволяет устанавливать мотор на лодках, имеющих различные углы наклона транца. Поэтому упорная пластина для дейдвуда, крепящаяся к низу кронштейнов, может переставляться в пять фиксированных положений.

На подвеске размещено специальное запорное устройство — защелка, удерживающая мотор от откидывания при запуске или движения на заднем ходу. Усиление пружин защелки регулируется так, чтобы она расцеплялась с пластиной кронштейнов и позволяла откинуться мотору при наезде на препятствие. Тем самым мотор и транец лодки предохраняются от серьезных поломок. Защелка может быть выключена вручную при нажатии на рычаг, расположенный спереди межцу кронштейнами, и мотор может быть легко откинут и зафиксирован на подставке в этом положении. Подвеска всех подвесных моторов имеет сходную конструкцию (см., например, рис. 4). У всех моторов семейства «Вихрь» подвеска полностью идентична и взаимозаменяема в узлах и деталях.

Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня [1] . Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки. Процесс удаления из цилиндра отработавших газов и наполнения его свежим зарядом в двухтактном двигателе называется продувкой.

Содержание

Сравнение двухтактного и четырёхтактного двигателя [ править | править код ]

Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала, что позволяет снимать в 1,5-1,7 раза бо́льшую мощность с того же рабочего объёма при тех же оборотах двигателя. Это особенно актуально при создании тяжёлых тихоходных двигателей средних и тяжёлых судов, соединяемых непосредственно с валом гребного винта регулируемого шага, а также в поршневой авиации, где для эффективной работы воздушного винта также требуются сравнительно низкие рабочие обороты, что позволяет устранить из конструкции редуктор привода на винт.

В качестве автомобильного или, тем более, мотоциклетного такой двигатель менее выгоден, тем не менее также позволяет создать сравнительно компактные, но мощные силовые агрегаты, нашедшие применение в мототехнике и, ранее, микролитражных и малолитражных легковых автомобилях (с кривошипно-камерной продувкой, рабочим объёмом обычно до 1,5 — 1,7 литра), а также на грузовых автомобилях и автобусах (с прямоточной продувкой, рабочим объёмом обычно от 4 литров и более).

Из-за вдвое большей частоты рабочих тактов и за счет омывания деталей, обеспечивающих выхлоп, удвоенным количеством выхлопных газов, эти детали двигателя находятся в более напряжённом тепловом режиме. В двигателях большой мощности обязательно используется принудительное охлаждение поршней.

За счёт вдвое меньшего количества нерабочих ходов поршня в каждом рабочем цикле вдвое уменьшаются потери на трение.

В двухтактных двигателях необходимо искать компромисс между качеством продувки и потерями свежего заряда. В отличие от четырёхтактного двигателя, где между тактами выпуска и впуска поршень находится в верхней мёртвой точке, почти полностью вытесняя выхлопные газы, в двухтактном продувка происходит во всём объёме цилиндра сразу, причём за достаточно короткое время. При этом невозможно полностью исключить смешивание свежего заряда с выхлопными газами. Особенно проблема потерь заряда актуальна для карбюраторных двигателей, так как в них в цилиндр во время продувки поступает готовая рабочая смесь, что приводит к увеличенному расходу топлива и большому количеству несгоревших углеводородов в выхлопе. В целом двухтактные двигатели имеют в 1,5-2 раза больший расход воздуха, из-за чего могут требовать более сложных воздушных фильтров. В отличие от четырёхтактного двигателя, при использовании турбонаддува энергия поступающего из турбокомпрессора воздуха не передаётся через поршень на коленчатый вал двигателя, в то же время выхлопные газы при выпуске не оказывают противодавления на поршень.

Читайте также:  Скрутка проводов без пайки

По конструкции двухтактный двигатель может быть как более простым (при контурной кривошипно-камерной и, отчасти, клапанно-щелевой продувке), так и более сложным, чем четырёхтактный (при прямоточной продувке).

Источники продувочного воздуха [ править | править код ]

В то время как в четырёхтактном двигателе всасывание свежего заряда происходит за счёт движения поршня из верхней мёртвой точки вниз при открытом впускном клапане, а опорожнение — вверх при открытом выпускном, в двухтактном свежий заряд должен поступать в цилиндр под давлением, вытесняя отработавшие газы. Для создания давления требуется нагнетатель. В упрощённых двигателях для этой цели используется нижняя часть поршня и полость картера — такая схема называется кривошипно-камерной продувкой.

В двигателях более сложных в качестве источника продувочного воздуха используются воздуходувки системы Рутс, дополнительные цилиндры (двигатель Корейво), специальные поршневые компрессоры (ЮМО-203) или турбинные нагнетатели, которые могут вращаться валом двигателя или турбиной, приводимой выхлопными газами. В некоторых случаях для обеспечения более стабильного поступления наддувочного воздуха используется сочетание механических нагнетателей с турбонаддувом.

Кривошипно-камерная продувка [ править | править код ]

При использовании кривошипно-камерной продувки воздух или горючая смесь поступает в цилиндр из полости картера двигателя, куда всасывается при движении поршня вверх, при движении поршня вниз избыточное давление обеспечивает продувку. При такой схеме возможно создание двигателя, состоящего из минимального количества деталей, так как ему не требуется продувочный насос. Чтобы не допустить потерь заряда через впускной трубопровод в атмосферу, перед входом в картер может устанавливаться лепестковый клапан либо насаженный на коленчатый вал дисковый золотник.

При использовании кривошипно-камерной продувки существуют определённые особенности, ограничивающие применение таких двигателей:

  • Необходимо, чтобы полость кривошипной камеры конкретного цилиндра была герметична и, по возможности, чтобы коленвал занимал возможно больший объём и был обтекаем, чтобы как можно меньше влиять на газодинамику, а большой объём металла существенно утяжеляет вал. Каждую кривошипную камеру многоцилиндрового двигателя приходится уплотнять сальниками с каждой стороны каждой коренной шейки, что требует применения разборного коленчатого вала (как следствие, существенная потеря жёсткости вала по сравнению с цельным).
  • Давление сжатия воздуха (смеси) в кривошипной камере невелико, что не позволяет получить и существенного давления продувочного воздуха (приходится увеличивать длительность фазы продувки, это вынуждает снижать эффективный рабочий объём — с потерей КПД).
  • Двигатели такой конструкции не позволяют разместить в картере масляную ванну. Для смазки карбюраторного двигателя приходится подмешивать моторное масло в топливо. В случаях с упрощёнными конструкциями это может считаться достоинством, так как редуцирует систему смазки двигателя как таковую. В ряде двигателей применяется раздельная подача масла и бензина в карбюратор («Ява-ОйлМастер»), но все равно подача масла к парам трения происходит за счёт осаждения из горючей смеси, из-за чего у таких двигателей высокий расход масла, которое, вдобавок, сгорает в цилиндре вместе с топливом. По этой же причине в двухтактных двигателях без системы смазки приходится использовать специальные масла, не содержащие присадок, способствующих закоксовыванию каналов и поверхностей деталей цилиндро-поршневой группы.

Дизельные и калоризаторные двигатели подобной конструкции также не имели масляной ванны в картере, так как пары масла, попадающие в цилиндр, могли бы привести к разносу. В них использовались схемы смазки с «сухим» картером. В двигателях простой конструкции, не рассчитанных на длительную непрерывную работу, применялась незамкнутая система смазки, где вместо масляного насоса часто применялась пневматические маслёнки — в этом случае требовалось регулярно сливать накапливающееся в картере отработавшее масло.

  • На холостом ходу и при малых углах открытия дроссельной заслонки свежего заряда недостаточно для того, чтобы цилиндр мог полностью очиститься от выхлопных газов за один оборот коленчатого вала. Поэтому работа таких двигателей на холостом ходу часто неустойчива, после вспышки в цилиндре следует несколько холостых оборотов, при которых смесь в цилиндре слишком бедная, чтобы воспламениться от искры. Для дизельных и калоризаторных двигателей такая особенность не характерна за счет иного способа организации процесса горения и наполнения цилиндра при впуске только свежим воздухом.

С использованием продувочных насосов [ править | править код ]

На крупных многоцилиндровых двухтактных двигателях продувочный воздух сжимается в отдельном компрессоре (типа Рутс, либо пластинчатый), что практически полностью устраняет указанные выше недостатки. При этом, однако, воздух может подаваться в цилиндры через полость картера, которая в этом случае выполняет функции ресивера. Для создания давления продувки может использоваться и турбокомпрессор, но в этом случае в момент пуска в двигатель необходимо подавать сжатый воздух от внешнего источника либо использовать двухступенчатый наддув с механической ступенью (10Д100).

В ранних двухтактных двигателях также применяли поршневые компрессоры, работающие от одного коленчатого вала с двигателем. Например, на ПДП-дизеле ЮМО-203 Юнкерса в качестве продувочных использовались особые квадратные поршни, установленные на траверсах поршней верхнего ряда. В двигателе английского микролитражного автомобиля Lloyd 650 (конец 1940-х годов) использовался запатентованный Роландом Ллойдом поршневой насос двойного действия («третий цилиндр»), имевший цепной привод от коленвала и продувавший два рабочих цилиндра бензовоздушной смесью.

Схемы продувки [ править | править код ]

В поршневых двигателях внутреннего сгорания большое значение имеет качественная очистка объёма цилиндра от отработавших газов. В бензиновых двигателях остатки отработавших газов приводят к преждевременному воспламенению из-за высокой температуры. В любых двигателях плохая очистка ведёт к снижению максимальной мощности и ухудшению качества сгорания топлива. Так как продувка происходит через весь объём цилиндра при нахождении поршня (или поршней) вблизи нижней мёртвой точки, качественно очистить цилиндр от отработавших газов гораздо сложнее. Улучшения качества продувки можно достичь двумя путями: оптимизацией траектории движения свежего заряда при продувке либо путём подачи избыточного количества продувочного воздуха, который будет выброшен в выхлопную трубу вместе с отработавшими газами. Второй способ применим только при наличии нагнетателя и прямого впрыска топлива в цилиндр.

Так как в двухтактном двигателе все процессы происходят за один оборот коленчатого вала, есть возможность упростить конструкцию двигателя, заменив впускные и/или выпускные клапаны окнами в стенке цилиндра, которые будут перекрываться рабочим поршнем. Отсутствие клапанов и клапанных пружин позволяет двигателю работать при более высокой частоте вращения. Однако при этом возникает проблема асимметричного открытия и закрытия окон относительно мертвых точек: продувочные окна должны открываться позже выпускных, чтобы к моменту их открытия давление в цилиндре понизилось и выхлопные газы не проходили через впускные окна, но и закрываться тоже позже, иначе вытеснив отработавшие газы, свежий заряд будет выходить через выпускные окна, пока те не будут перекрыты. При этом, кроме возникновения потерь свежего заряда становится невозможным наддув.

Читайте также:  Zlb kr8 схема подключения

Однопоршневые двигатели с щелевой (контурной) продувкой [ править | править код ]

Наиболее простая схема, при которой имеется один поршень, а газораспределение осуществляется за счёт перекрытия окон в стенке цилиндра. Впускные и продувочные окна в таком двигателе располагаются в нижней части цилиндра, так как должны быть перекрыты во время сжатия и рабочего хода двигателя. При этом осуществить асимметричность фаз газораспределения без введения дополнительных элементов (золотников, гильз, клапанов и т. д.) невозможно.

Простота реализации контурной продувки (особенно при использовании подпоршневого пространства в качестве продувочного насоса, то есть кривошипно-камерной) и дешевизна обеспечили очень широкое распространение таких двигателей на недорогих и легких устройствах. Их устанавливают на мопедах, мотоциклах, мотодельтапланах, мотопилах, газонокосилках, моторных лодках, используют в качестве пусковых двигателей, то есть там, где небольшая мощность делает относительно малозаметными дополнительные потери и играют существенную роль дешевизна и доступность конструкции. Такие двигатели применялись также на ряде автомобилей, например на DKW, СААБ, Trabant, Wartburg, Barkas в Европе, Suzuki Jimny в Японии.

Симметрия открытия впускных и выпускных окон позволяет достаточно просто организовать реверсирование двигателя — двигатель просто продолжает вращаться в том же направлении, в котором он вращался при запуске. Низкооборотные дизельные и калоризаторные двигатели с маховиками большой массы реверсируются при снижении оборотов: если при подходе к верхней мёртвой точке инерции маховика становится недостаточно для продолжения движения в том же направлении, при вспышке в цилиндре он начинает вращаться в обратном.

Существенно улучшить экономичность двухтактных двигателей с контурной продувкой позволяет применение системы впрыска топлива вместо карбюратора. Последние образцы мотоциклетных двухтактных двигателей с впрыском на 50 % экономичней карбюраторных, значительно превосходя при этом четырёхтактные моторы в литровой мощности [2] .

Для снижения потерь заряда применяется принцип Каденасси — аэродинамическая и акустическая настройка трактов с использованием отражённой волны выхлопных газов. Для этого в выхлопной системе двигателя устанавливаются акустический резонатор, который настраивается так, чтобы часть попавших в неё газов возвращалась обратно перед закрытием выпускных окон. Кроме того, она может эффективно работать в узкой части диапазона оборотов двигателя — а именно в той, на которой происходит резонанс газовой струи.

Так как газораспределительные окна находятся в нижней части цилиндра, возникают сложности с продувкой его верхней части. Для этого струю воздуха или горючей смеси направляют так, чтобы она двигалась вдоль контура цилиндра — поэтому такие схемы продувки называют контурными. Существует несколько разновидностей контурной продувки.

Поперечная схема продувки наиболее проста: в ней выпускные окна располагаются напротив впускных. Такая схема продувки на современных двигателях не применяется, так как влечёт за собой большие потери заряда из-за того, что он движется по траекториям разной длины и достигает выпускного окна через разное время.

Дефлекторная продувка схожа с поперечной, однако на поршне имеется выступ — дефлектор, имеющий форму козырька. Дефлектор направляет поток продувочного воздуха, не позволяя ему смешиваться с отработавшими газами. Кроме того, при малом открытии дросселя благодаря дефлектору рабочая смесь распределяется неравномерно: если со стороны выпускных окон свежий заряд сильно перемешан с отработавшими газами, то со стороны впускных окон горючая смесь более богатая и легко поджигается свечой. Таким образом, дефлекторная продувка лучше работает на холостом ходу и частичных нагрузках. Кроме того, цилиндры двигателей с дефлекторной продувкой проще в изготовлении, так как не критичны к форме впускного канала. Однако для высокофорсированных двигателей дефлекторная продувка не подходит. Сложная форма камеры сгорания при дефлекторной продувке ухудшает параметры рабочего процесса и повышает склонность бензиновых двигателей к детонации, а дизельных — к дымлению, что препятствует форсированию и повышению экономичности двигателей. К тому же поршень с толстым донышком склонен к перегреву. В связи с этим большинство производителей двухтактных двигателей отказались от дефлекторной продувки.

При фонтанной продувке продувочные и выпускные окна располагаются по всей окружности цилиндра в два ряда: сверху — выпускные, а под ними — продувочные окна. Такая схема позволяет несколько лучше продуть центральную область, однако из-за вихревого движения смеси увеличивается потеря свежего заряда.

Наиболее распространена петлевая схема продувки, при которой впускные окна расположены достаточно близко к выпускным, однако за счёт формы впускного трубопровода свежий заряд направляется вверх и в меньшей степени увлекается отработавшими газами.

Конструкции лодочных моторов, как стационарные, так и подвесные, сегодня крайне востребованы во всем мире. Этот агрегат в свое время произвел революцию, и до сих пор является очень востребованным в лодочной среде. Конечно, ведь лодочный мотор – это основа всей лодки, без которой судно не сможет быстро и мощно рассекать водное пространство.

Лодочный мотор Suzuki DF15

Сегодня существует огромное множество лодочных агрегатов, которые отличаются своими функциями, конфигурациями, техническими моментами, дизайном, цветами и многим другим. Наиболее популярными являются такие лодочные агрегаты, как двухтактные и четырехтактные моторы на лодки. Эти современные агрегаты отличаются совершенными характеристиками надежности, безопасности и долговечности. Также можно долго говорить о том, насколько они являются практичными.

Особенности современных лодочных моторов

Общие характеристики современных агрегатов на лодки являются весьма внушительными. Сегодня мототехника сделала огромный шаг вперед, и тем самым сделала устройство лодочного мотора очень технологичным и совершенным:

  • сегодня подвесными лодочными моторами оснащают очень многие плавательные средства, такие как гидроциклы, яхты, катера и лодки, а также надувные лодки ПВХ. Можно сказать, что эти моторы являются универсальными. Порой даже, имея сразу и гидроцикл и лодку, лодочник имеет лишь 1 мотор на 2 средства передвижения;
  • лодочные моторы обладают крайне надежными, практичными и долговечными характеристиками. Особенно выделяются двухтактные и четырехтактные лодочные моторы, которые завоевали популярность во всем мире. Это крайне надежные агрегаты, которые являются очень мощными. Максимальная мощность таких лодочных моторов составляет 300 лошадиных сил. Большинство подобных лодочных моторов обладают очень хорошей экономичностью, учитывая их мощность. Порой экономичность доходит до 45 процентов;
  • на современном рынке мототехники более всего востребованы лодочные моторы из Японии, Соединенных Штатов Америки и Китая. Эти моторы представляют собой образцы высокого качества и долговечности. Со времен появления этой техники на рынке, можно сказать, что изменились все тенденции в мире лодочных моторов. Сразу же поменялось отношение этим агрегатам и принцип обслуживания. Теперь уходу за такими моторами уделяют особенное внимание и тщательно за ними следят. И моторы не остаются в долгу – после этого они способны прослужить много лет и даже десятков лет своему владельцу.