Плотность стали от температуры

Разработка научнообоснованных принципов уп­равления металлургическими процессами с целью интенсификации производства, повышения каче­ства металла, экономии материальных и энерге­тических ресурсов требует достоверных данных о теплофизических свойствах расплавов метал­лургического производства, глубокого понимания природы жидкого состояния. Особое значение эти данные приобретают в связи с внедрением в металлургическое производство автоматизирован­ных систем управления технологическими про­цессами (АСУ ТП).

Для реализации АСУ переплавных процессов, разливки, кристаллизации металла в качестве исходной информации используются данные о тем­пературе ликвидуса и солидуса, плотности, теплоемкости, теплопроводности и вязкости жид­кого металла, изменении плотности при кристал­лизации и удельной теплоте кристаллизации. Проведенный в работе [1] расчет показал, что макроструктура слитка в модели кристаллиза­ции и ЭШП весьма чувствительна к используемым теплофизический характеристикам металлурги­ческого расплава. Так, для обеспечения точ­ности расчета пористости моделируемого слитка на уровне 10 % данные о температуре ликви­дуса и солидуса должны быть определены с точностью порядка 10 °С (

0,7%), плотности жидкого и твердого металла

8%), теплоте кристаллизации

50%). Таким образом, особые требования по точности к используемым в модели процесса кристаллизации данным выдвигаются к температуре ликвидуса и солидуса (темпе­ратурному интервалу кристаллизации) и плотно­сти металла в жидком и твердом состояниях (скачку плотности при кристаллизации).

Температуру ликвидуса TL и солидуса TS ста­ли 35 марок определяли методом проникающего гамма-излучения по изменению интенсивности проникающего через образец излучения в точках начала и конца процессов кристаллизации и плавления [2].

Для расчета температуры ликвидуса и соли­дуса стали используют два простых метода — по диаграмме состояния системы Fe-C. или в приближении аддитивного влияния содержания в стали примесей — на температуру плавления чистого железа [3, 4].

TL =Tпл — ΣαLi∙[i] (1)
TS =Tпл — ΣαSi∙[i] (2)
где aL (j) и аS(V) коэффициенты, показываю­щие на сколько градусов изменяются температуры ликвидуса и солидуса стали при добавле­нии 1 % i-ro компонента.

Детальная проверка уравнения (1) в работе [4] показала, что при содержании легирующих элементов — марганца 3

ΔρкрS∙100, % aV-S, 10 4 K — 1 14ХН3МА 1470 7,28 0,89 25 1508 6,95 3,7 0,92 45ХН2МФА 1431 7,17 0,84 21 1504 6,89 2,9 1,09 1499 6,80 3,3 1,08 1507 6,8 3,1 0,72 Х25Т 1424 6,97 0,93 12Х18Н10Т 1403 7,24 0,98 10Х18Н9ТЛ 2 1405 7,23 0,96 1435 7,35 4,3 0,95 Р18 1312 8,40 0,8 Р18 1 1301 1457 7,01 3,8 0,70 1451 7,02 3,6 0,71

Данные о плотности жидкой и твердой стали при температуре ликвидуса и солидуса, получен­ные в работе [11] методом проникающе­го гамма-излучения, приведены в таблице. Для стали большей части марок величина dL на­ходится в интервале 6,90±0,1 г/см 3 . Исключе­ние составляет сталь P18, Р6АМ5, ЗХ2В8Ф с повышенным содержанием вольфрама и мо­либдена.

где V, — атомный объем i-ro компонента;
Xi =
Mc[i] /(Mj∙100) — мольная доля компонен­та i,
Mj
и Мc — мольная масса соответствен­но компонента i и сплава. Из уравнения (3) следует:

Плотность сплава можно рассчитать через моль­ный объем в приближении аддитивности:

Для повышения точности расчета плотности стали, содержащей >0,3 % С, мольный объем углерода следует брать равным парциальному мольному объему углерода в расплаве железа — 3,0 см 3 /моль. Приближение аддитивного объема обеспечивает точность расчета плотности жид­кой стали в пределах 1,0. 1,5 %.

Изобарные коэффициенты расширения аV для исследованных расплавов различаются между собой незначительно, их значения близки к величине ау для чистого жидкого железа (0,81∙10 -4 К -1 ) и находятся в пределах (0,90±0,15)∙10 -4 К -1 .

Изменение плотности при кристаллизации стали находится в пределах (2,9. 4,5 %). Такой до­вольно широкий интервал значений скачка плот­ности стали ряда марок связан в основном с различием структур, которые образуются при кристаллизации стали. Известно, что переход жидкое-твердое у металлов с кристаллической структурой О.Ц.К. сопровождается меньшим скачком плотности, чем металлов со структу­рой Г.Ц.К. (2,0. 3,5) % в первом случае и (4,0. 6,5) % во втором [6].

Для оценки величины скачка плотности при кристаллизации стали нужно знать структуру и соотношение между, структурными составляющи­ми. Это затрудняет расчет. В настоящее время надежные данные об изменении плотности при кристаллизации могут быть получены только экспериментально.

Такие теплофизические характеристики, как коэффициенты теплопроводности, теплоемкость и теплота кристаллизации определены лишь для стали небольшого числа марок. Коэффициенты теплопроводности, λ неизвестны или определены весьма приближенно и для многих чистых жид­ких металлов, имеющих высокую температуру плавления. Так, в справочных изданиях отсут­ствуют данные о λ, для жидких железа, ко­бальта и никеля.

Читайте также:  Как работает гидроабразивная резка

В работе [11] создан способ измерения коэффициентов теплопроводности жид­ких металлов. По полученным данным [7] ве­личина λ для жидких Fe, Со и Ni при темпера­туре плавления равна соответственно 26, 36 и 68 Вт/(м>К). С некоторыми модификациями разработанный способ был применен и для измере­ния коэффициентов теплопроводности жидкой стали [2]. Коэффициенты теплопроводности при температуре плавления для стали различных ма­рок заметно различаются. Приведенные в таблице данные показывают снижение значений λ с уве­личением содержания в стали углерода.

В связи с затруднениями измерения коэф­фициентов теплопроводности жидкой стали боль­шое значение имеют расчетные методы их определения. Достаточно простым приближением, в частности, является закон Видемана — Фран­ца, связывающий теплопроводность металла с электросопротивлением:

λ = LT/z (5)
где L — функция Лоренца, в общем случае зависящая от температуры [2].

Для простых жидких металлов расчет по этому закону дает хорошие результаты при функции L, равной постоянной величине:

При высокой температуре величина L близка к L и для твердых переход­ных металлов. Для жидкого железа и, особенно, кобальта величина L близка к L, для никеля — значительно выше. Для жидкой стали можно принять величину L = 2∙10 -8 В 2 /К 2 (по данным работы [8] для железа L = 2,44∙10 -8 В 2 /К 2 ).

Электросопротивление металлических распла­вов измеряется проще, чем теплопроводность и с более высокой точностью (

5 %), поэтому для определения теплопроводности можно рекомендо­вать уравнение (5).

Значения теплоемкости жидкой стали (по дан­ным [3]) имеют довольно узкий интервал — 0,76. 0,85 Дж/(г∙К); разброс значений Cp, практи­чески не выходит за пределы эксперименталь­ной ошибки, а средняя величина Cp совпадает с теплоемкостью чистого жидкого железа, рав­ной 0,825 Дж/(г∙К).

Для расчета теплоемкости жидкой стали в работе [11] было получено следующее выра­жение (в приближении модели жестких сфер):

Рассчитанные по этому уравнению значения теплоемкости (числитель) близки к опытным дан­ным (знаменатель), Дж/(г∙К): 20ХН3А — 0,84/0,80; 08Х18Н10Т — 0,83/0,76; Р18 — 0,73/0,78; 14Г2 — 0,84/02,84; 09Г2С — 0,84/0,85; Ст 3 — 0,84/0,83; 118ХГТ — 0,84/0,82; 30ХГСА — 0,83/0,80.

Значения удельной теплоты кристаллизации q [3] также близки к величине q для чистого железа, равной 272 Дж/г. В приближении мо­дели жестких сфер в работе [11] было получено следующее уравнение, связывающее теплоту кристаллизации стали (кДж/моль) со скач­ком плотности при их кристаллизации:

Для сталей 20ХНЗА, 12Х18Н10Т и P18, для кото­рых в таблице приведены данные об относи­тельном изменении объема (плотности) и известны значения об удельной теплоте кристаллиза­ции [3], рассчитанные значения q составили соответственно 16,1; 16,3; 15,2 кДж/моль. Резуль­таты расчета согласуются с опытными дан­ными, равными соответственно 15,6; 15,9; 15,0 кДж/моль.

Экспериментальные данные, касающиеся влия­ния примесей на вязкость жидкого железа (имеется в виду изменение вязкости при вве­дении в железо первых добавок), противоречивы.

В работах [6, 9] параметры, характеризующие изменение вязкости матрицы расплава (железа) под влиянием отдельных компонентов, опреде­ляются экспериментально и используются для расчета вязкости многокомпонентных систем.

Качественно характер влияния примесей на вязкость железа можно описать в приближений модели жестких сфер.

В общем случае вязкость жидкой стали и спла­вов зависит от технологии их выплавки, исполь­зуемых шихтовых материалов и других факто­ров металлургического производства [5], которые трудно учесть в тех или иных теоретических моделях.

Заключение

Температура ликвидуса и мольный объем стали с точностью порядка 1 % могут быть определены в приближении аддитивного влияния легирую­щих элементов и примесей на температуру плавления и мольный объем чистого жидкого железа. Теоретические оценки температуры соли­дуса и плотности твердой стали при TS нена­дежны. Для оценки коэффициента теплопровод­ности расплавов на основе железа можно воспользоваться законом Видемана — Франца, вязкости теплоемкости и удельной теплоты кри­сталлизации — приближением модели жестких сфер.

Плотность стали, удельный вес стали и другие характеристики стали

Плотность стали (7,7-7,9)*10 3 кг/м 3 ;

Удельный вес стали (7,7-7,9) г/cм 3 ;

Удельная теплоемкость стали при 20 o C — 0,11 кал/град;

Температура плавления стали — 1300-1400 o C ;

Удельная теплоемкость плавления стали — 49 кал/град;

Коэффициент теплопроводности стали — 39ккал/м*час*град;

Коэффициент линейного расширения стали

(при температуре около 20 o C) :

сталь 3 (марка 20) — 11,9 (1/град);

сталь нержавеющая — 11,0 (1/град).

Предел прочности стали при растяжении :

сталь для конструкций — 38-42 (кГ/мм 2 );

сталь кремнехромомарганцовистая — 155 (кГ/мм 2 );

сталь машиноподелочная (углеродистая) — 32-80 (кГ/мм 2 );

сталь рельсовая — 70-80 (кГ/мм 2 );

Модули упругости стали и коэффициент Пуассона

Модуль Юнга, кГ/мм 2

Модуль сдвига, кГ/мм 2

Стали легированные Стали углеродистые

Величины допускаемых напряжений стали (кГ/мм 2 )

Сталь легированная конструкционная в машиностроении

Сталь углеродистая конструкционная в машиностроении

Свойства некоторых электротехнических сталей

Начальная магнитная проницаемость, гс/эрсm

Максимальная магнитная проницаемость, гс/эрсm

Коэрци- тивная сила, эрсm

Читайте также:  Как работает подключаемый полный привод

Индукция при 25 эрсm , гс

Удельное электрическое сопротивление, ом*мм 2 /м

Э 31 Э 41 Э 42 Э 45 Э 310

250 300 400 600 1000

5500 6000 7500 10000 30000

0,55 0,45 0,4 0,25 0,12

15200 14900 14900 14600 17800

0,52 0,6 0,6 0,62 0,5

Сталь. Классификация

Сталь – деформируемый (ковкий) сплав железа с углеродом (до 2%) и другими элементами. Сталь – важнейший материал, применяемый в большенстве отраслей промышленности. К стали, в зависимости от применения, предъявляют разнообразные требования. Существует большое число марок сталей, различающихся по химическому составу, структуре, физическим и механическим свойствам.

Основные характеристики стали (плотность стали, модуль упругости и модуль сдвига стали, коэффициент линейного расширения и т.д.) приведены на странице» физические свойства стали».

По химическому составу стали делятся на углеродистые и легированные. Углеродистая сталь наряду с железом и углеродом содержит марганец (0,1-1,0%), кремний (до 0,4%).

Сталь содержит также вредные примеси (фосфор, серу, газы — несвязанный азот и кислород). Фосфор придает стали хрупкость (хладноломкость) при низких температурах, уменьшает пластичность при нагревании. Сера вызывает трещиноватость при высоких температурах (красноломкость).

Для изготовления сварных конструкций в основном применяется углеродистая сталь обыкновенного качества, соответствующая ГОСТ 380-71. Для придания стали каких-либо особых свойств – механических, электрических, магнитных, коррозионной устойчивости и т.д. – в нее вводят так называемые легирующие элементы, как правило, металлы: хром, никель, молибден, алюминий и др. Такие стали называют легированными.

Свойства стали можно изменять, применяя различные виды обработки: термическую (закалка, отжиг), химико-термическую (цементизация, азотирование), термо-механическую (прокатка, ковка). При обработке стали для получения необходимой структуры используют свойство полиморфизма, присущее стали так же, как и их основа – железу. Полиморфизм – способность кристаллической решетки менять свое строение при нагреве и охлаждении. Взаимодействие углерода с двумя модификациями (видоизменениями) железа — α и γ – приводит к образованию твердых растворов. Избыточный углерод, не растворяющийся в α-железе, образует с ним химическое соединение — цементит Fe3C. При закалке стали образуется метастабильная фаза — мартенсит – пересыщенный твердый раствор углерода в α-железе. Сталь при этом теряет пластичность и приобретает высокую твердость. Сочетая закалку с последующим нагревом (отпуском), можно добиться оптимального сочетания твердости и пластичности.

По назначению стали делятся на конструкционные, инструментальные и стали с особыми свойствами. Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов. Инструментальные стали служат для изготовления резцов, штампов и других режущих, ударно-штамповых и измерительных инструментов. К сталям с особыми свойствами относятся электротехнические, нержавеющие, кислотостойкие и др.

По способу изготовления сталь бывает мартеновской и кислородно-конверторной (кипящей, спокойной и полуспокойной). Кипящую сталь сразу разливают из ковша в изложницы, она содержит значительное количество растворенных газов. Спокойная сталь — это сталь, выдержанная некоторое время в ковшах вместе с раскислителями (кремний, марганец, алюминий), которые соединяясь с растворенным кислородом, превращаются в оксиды и выплывают на поверхность массы стали. Такая сталь имеет лучший состав и более однородную структуру, но дороже кипящей на 10-15%. Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей.

В современной металлургии сталь выплавляют в основном из чугуна и стального лома. Основные виды агрегатов для ее выплавки: мартеновская печь, кислородный конвертер, электропечи. Наиболее прогрессивным в наши дни считается кислородно-конвертерный способ производства стали. В то же время развиваются новые, перспективные способы ее получения: прямое восстановление стали из руды, электролиз, электрошлаковый переплав и т.д. При выплавке стали в сталеплавильную печь загружают чугун, добавляя к нему металлические отходы и железный лом, содержащий оксиды железа, которые служат источником кислорода. Выплавку ведут при возможно более высоких температурах, чтобы ускорить расплавление твердых исходных материалов. При этом железо, содержащееся в чугуне, частично окисляется:

2Fe + O2 = 2FeO + Q

Образующийся оксид железа (II) FeO, перемешиваясь с расплавом, окисляет, кремний, марганец, фосфор и углерод, входящие в состав чугуна:

Si +2FeO = SiO2 + 2 Fe + Q

Mn + FeO = MnO + Fe + Q

C + FeO = CO + Fe – Q

Чтобы довести до конца окислительные реакции в расплаве, добавляют так называемые раскислители – ферромарганец, ферросилиций, алюминий.

Плотность стали и её другие физические свойства

Он в зависимости от своего химического состава и области применения разделяются на несколько групп. Так, по химическому составу стали делятся на углеродистые и легированные.

Плотность стали равна:

Однако в углеродистой стали промышленного производства всегда имеются примеси многих элементов. Присутствие одних примесей обусловлено особенностями производства стали: например, при раскислении в сталь вводят небольшие количества марганца или кремния, которые частично переходят в шлак в виде оксидов, а частично остаются в стали. Присутствие других примесей обусловлено тем, что они содержатся в исходной руде и в малых количествах переходят в чугун, а затем и в сталь. Полностью избавиться от них трудно. Вследствие этого, например, углеродистые стали обычно содержат 0,05 – 0,1% фосфора и серы.

Читайте также:  Как правильно подключить электропечь

Механические свойства медленно охлажденной углеродистой стали сильно зависят от содержания в ней углерода. Медленно охлажденная сталь состоит из феррита и цементита, причем количество цементита пропорционально содержанию углерода. Твердость цементита намного выше твердости феррита. Поэтому при увеличении содержания углерода в стали её твердость повышается. Кроме того, частицы цементита затрудняют движение дислокаций в основной фазе – в феррите. По этой причине увеличение количества углерода снижает пластичность стали.

Углеродистая сталь имеет широкое применение. В зависимости от назначения применяется сталь с малым или более высоким содержание углерода, без термической обработки (в «сыром» виде – после проката) или с закалкой и отпуском.

Элементы, специально вводимые в сталь в определенных концентрациях для изменения её свойства, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной сталью. К важнейшим легирующим элементам относятся хром, никель, марганец, кремний, ванадий, молибден.

Различные легирующие элементы по-разному изменяют структуру и свойства стали. Так, некоторые элементы образуют твердые растворы в g-железе, устойчивые в широкой области температур. Например, твердые растворы марганца или никеля в g-железе при значительном содержании этих элементов стабильны от комнатной температуры до температуры плавления. Сплавы железа с подобными металлами называются аустенитными сталями или аустенитными сплавами.

Влияние легирующих элементов на свойства стали обусловлено также тем, что некоторые из них образуют с углеродом карбиды, которые могут быть простыми, напримерMn3C, Cr7C3, а также сложными (двойными), например (Fe, Cr)3C. Присутствие карбидов, особенно в виде дисперсных включений в структуре стали, в ряде случаев оказывает сильное влияние на её механические и физико-химические свойства.

Назначения и плотность стали

По своему назначению стали делятся на конструкционные, инструментальные и на стали с особыми свойствами. Конструкционные стали применяются для изготовления деталей машин, конструкций и сооружений. В качестве конструкционных могут использоваться как углеродистые, так и легированные стали. Конструкционные стали обладают высокой прочностью и пластичностью. В то же время они должны хорошо поддаваться обработке давлением, резанием, хорошо свариваться. Основными легирующие компоненты конструкционных сталей – это хром (около 1%), никель (1-4%) и марганец (1-1,5%).

Их применяют для изготовления режущих и измерительных инструментов, штампов. Необходимую твердость обеспечивается содержащийся в этих сталях углерод (в количество от 0,8 до 1,3%). Основной легирующий элемент инструментальных сталей – хром; иногда в них вводят также вольфрам и ванадий. Особую группу инструментальных сталей составляет быстрорежущая сталь, сохраняющая режущие свойства при больших скоростях резания, когда температура рабочей части резца повышается до 600-700 o С. Основные легирующие элементы этой стали – хром и вольфрам.

К группе сталей с особыми свойствами относятся нержавеющие, жаростойкие, жаропрочные, магнитные и некоторые другие стали. Нержавеющие стали устойчивы против коррозии в атмосфере, влаге и в растворах кислот, жаростойкие – в коррозионно-активных средах при высоких температурах. Жаропрочные стали сохраняют высокие механические свойства при нагревании до значительных температур, что важно при изготовлении лопаток газовых турбин, деталей реактивных двигателей и ракетных установок. Важнейшие легирующие элементы жаропрочных сталей – это хром (15-20%), никель (8-15%), вольфрам.

Примеры решения задач

Задание Определите молярную массу газа, если его относительная плотность по кислороду равна 0,8125.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Молярная масса газа равна его плотности по отношению к другому газу, умноженной на молярную массу второго газа:

Тогда, молярная масса неизвестного газа будет равна:

Ответ Молярная масса газа равна 26 г/моль.
Задание Плотность простого вещества газа фтора по воздуху равна 1,31. Вычислите молярную массу фтора и его формулу.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Молярная масса газа равна его плотности по отношению к другому газу, умноженной на молярную массу второго газа:

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух – это смесь газов.

Тогда, молярная масса газа фтора будет равна:

Mgas = Dair× M(air) = 1,31 × 29 = 37,99 г/моль.

Относительная атомная масса фтора равна 18,9984 а.е.м. Тогда, в состав молекулы фтора входит Mgas /Ar(F) атомов фтора:

Значит формула молекулы фтора F2.

«>

Ссылка на основную публикацию