Эффективное использование устройств плавного пуска (УПП) возможно только при условии корректного выбора типономинала. Ключевыми критериями выбора обычно являются тип нагрузки двигателя, частота пусков, а также паспортные данные.
Пусковые характеристики устройств могут значительно отличаться друг от друга, причём их величины зависят от спектра решаемых задач. Именно поэтому при выборе устройства плавного пуска асинхронных двигателей так важно учитывать область его будущего применения.
Характеристики пуска условно можно разделить на три категории.
Режимы работы УПП
– Нормальный режим ограничивается величиной пусковых токов на уровне 3,5 х I ном, при времени пуска от 10 до 20 секунд.
– Тяжёлый режим характеризуется нагрузками с несколько большим моментом инерции. Пусковые токи ограничены пределом 4,5 х I ном, а время разгона — 30-ю секундами.
– Очень тяжелый режим подразумевает наличие очень высоких моментов инерции. Пусковые токи доходят до уровня 5,5 х I ном, а время разгона может значительно превышать 30 секунд.
Рассмотрим основные категории устройств плавного пуска.
Схема работы УПП может быть одной из четырёх типов:
1. Регуляторы пускового момента контролируют лишь одну фазу трехфазного асинхронного двигателя. Хотя такой тип управления и способен контролировать плавный пуск, он не обеспечивает снижения пусковых токов.
Фактически, при использовании регуляторов пускового момента, ток на обмотках двигателя приблизительно равен току, который получается при прямом пуске. В тоже время, такой ток протекает по обмоткам дольше, чем в случае прямого пуска, поэтому двигатель может перегреться.
Устройства такого типа не могут применяться для приводов, которым нужно снижение пусковых токов. Они не могут обеспечить пуск высокоинерционных механизмов (из-за опасности перегрева двигателя), а также частые запуски/остановки привода.
2. Регуляторы напряжения без сигнала обратной связи могут работать только по жестко заданной пользователем программе. Обратная связь от двигателя отсутствует, поэтому они не могут изменять частоту вращения двигателя, подстраивая её под меняющуюся нагрузку. В остальном они отвечают всем требованиям, которые предъявляются к мягким пускателям, и способны управлять всеми фазами двигателя. Это едва ли не самые популярные устройства плавного пуска.
Таблица 1 Режим работы в зависимости от области применения
Схема запуска двигателя определяется путём предварительного задания стартового напряжения, а также времени, необходимого для пуска. Многие устройства такого типа могут обеспечивать также ограничение величины пускового тока — это достигается снижением напряжения при запуске. Разумеется, такие регуляторы способны управлять также замедлением работы механизма, выполняя плавный и продолжительный останов.
Двухфазные регуляторы могут снижать напряжение и в трёх фазах, однако ток получается несбалансированным.
3. Регуляторы напряжения с сигналом обратной связи — это модернизированные версии устройств, описанных выше. Они способны считывать текущую величину тока и регулировать напряжение таким образом, чтобы ток не выходил за заданные пользователем рамки. Также полученные данные используются для работы разнообразных защит (от дисбаланса фаз, перегрузки и т.п.).
Такое устройство плавного пуска асинхронных двигателей может быть сгруппировано с другими подобными устройствами в единую систему управления электродвигателями.
4. Регуляторы тока с сигналом обратной связи. Это самые современные устройства плавного пуска. Схема работы основана на регуляции силы тока, а не напряжения, как предыдущие модели. Это обеспечивает лучшую точность управления, более простое программирование и быструю настройку устройства — ведь большинство параметров тут определяется автоматически, без необходимости ручного ввода.
Запуск на пониженное напряжение
В момент такого пуска ток, протекающий через двигатель, равен току в случае заклиненного ротора. Двигатель в это время разгоняется, причём момент в какое-то мгновение становится выше номинала, после чего приходит к номинальному значению. Характер изменения тока и момента зависит от конструкции и модели каждого конкретного двигателя.
Следует заметить, что процесс запуска двигателей разных моделей, но имеющих одинаковые характеристики, может сильно отличаться. Пусковой ток может находиться в пределах 500%—700% от номинального, а момент — от 70% до 230%!
Такие особенности являются серьёзным препятствием для работы этого вида устройств плавного пуска асинхронных двигателей. Поэтому если ваша задача — получить высокий пусковой момент при минимальном значении пускового тока, вам нужно подбирать соответствующие двигатели.
Пусковой момент двигателя имеет квадратичную зависимость от силы тока, как уже было показано.
Необходимо помнить, что снижение тока должно быть ограниченным: если пусковой момент станет меньше момента нагрузки, разгон прекратится, и двигатель не наберет номинальную скорость вращения.
Пускатели по схемам треугольник/звезда
Хотя пускатели такого типа являются самым распространённым видом устройств плавного пуска, схема треугольник/звезда не позволяет работать при больших нагрузках.
Сначала, при пуске, двигатель подключается «в звезду», а момент и величина тока при этом равна трети от номинальной. По истечению заданного интервала привод отключается и снова включается, но уже по схеме «треугольник».
Пуск будет эффективным, если при разгоне по схеме «звезда» двигатель сможет развить момент, который необходим для набора скорости, достаточной для переключения на «треугольник». Если это произойдёт на скорости, значительно меньшей номинальной, то ток при таком пуске не будет значительно отличаться от тока прямого пуска, а значит, применение устройства лишено смысла.
Кроме взрывных скачков тока и момента, в момент перехода двигателя на работу по схеме «треугольник» происходят и другие сложные переходные процессы. Их амплитуда зависит от амплитуды и фазы напряжения, которое создаётся двигателем при переключении.
В самом худшем случае величина напряжения может быть такой же, как в сети, однако находиться в противофазе. Тогда ток будет превышать номинальный в два раза, а момент, согласно вышеприведенной формуле, в четыре.
Пускатели с автотрансформатором
В конструкции таких пускателей для снижения подводимого к двигателю напряжения используется автотрансформатор. Для ступенчатой регуляции величины пускового тока и момента используются специальные отводы. Полная скорость вращения вала электродвигателя достигается до момента перехода на номинальное напряжение, а скачки тока при этом минимизируются. В тоже время из-за ступенчатого характера регулирования достичь высоких показателей точности оказывается невозможно.
Пускатель с автотрансформатором, в отличие от предыдущего (треугольник/звезда) характеризуется замкнутыми переходными процессами. Это означает, что жесткие переходные процессы кривых момента и тока во время разгона электродвигателя отсутствуют.
Из-за падения величины напряжения на автотрансформаторе, уменьшается момент на любых скоростях электродвигателя. При высокоинерционной нагрузке привода время пуска может превысить допустимые (безопасные) пределы, а при переменной — поведение системы становится неоптимальным.
Пускатели с автотрансформатором обычно используются при частоте пусков до 3 шт./час. Устройства плавного пуска асинхронных двигателей, рассчитанные на более частые запуски или на более сильную нагрузку, имеют большие габариты и стоят значительно дороже.
Пускатели со встроенными в цепь статора резисторами
Такие пускатели для снижения подводимого к статору напряжения используют жидкостные или металлические резисторы. При грамотном выборе резисторов такие устройства обеспечивают хорошее снижение момента и пускового тока электродвигателя.
Точный выбор резисторов должен быть сделан ещё на этапе проектирования с учётом всех параметров двигателя, его режимов работы и планируемой нагрузки. Однако такая информация не всегда оказывается доступной, а когда резисторы выбирают неточно, то и качество, и надёжность работы пускателя остаются невысокими.
Особенность такой схемы заключается в том, что сопротивление резисторов меняется в процессе работы из-за их нагрева. По причине опасности перегрева, пускатели с резисторами не используются для работы с высокоинерционными машинами и механизмами.
Устройства плавного пуска асинхронных двигателей
УПП (тиристорные УПП) — это наиболее технически совершенные электронные устройства, используемые для плавного пуска/останова электродвигателей. Принцип работы заключается в управлении входящим напряжением. Основная задача — управление пусковым током и моментом, однако современные схемы устройств плавного пуска имеют множество интерфейсных функций, а также позволяют обеспечить комплексную защиту двигателя.
Основные функции УПП:
— возможность плавно и бесступенчато изменять напряжение и ток;
— возможность управления током и моментом путём создания несложных программ;
— плавный останов с мягким торможением в тех системах, где это может потребоваться (конвейеры, насосы и т.п.);
— обеспечение частых пусков и остановов без изменения характеристик системы;
— оптимизация рабочих процессов даже в системах с изменяющейся нагрузкой.
Применение УПП позволяет:
устранить ударные токи в питающей сети и АД при его пуске;
снизить пусковые токи в АД;
устранить механические ударные воздействия как на АД, так и на приводной механизм;
уменьшить тепловые воздействия на АД;
снять перенапряжения при останове АД;
сократить время поиска неисправности;
повысить надежность эксплуатации и срок службы АД.
Устройство плавного пуска представляет из себя тиристорный регулятор напряжения (ТРН)
В регуляторе напряжения в каждый фазный провод включаются встречно-параллельно два тиристора, один из которых работает условно в положительный полупериод напряжения сети, а другой в отрицательный. Регулирование напряжения на выходе регулятора осуществляется изменением времени включения каждого тиристора относительно момента, когда ток должен переходить с одного из трех тиристоров на другой (базовая точка), путем подачи на тиристор управляющего импульса, что дает возможность изменять время протекания тока через тиристор в течение полупериода напряжения сети и напряжение на его выходе, подаваемое на нагрузку, в данном случае на двигатель. Это напряжение не является синусоидальным, и его можно представить как среднее напряжение, которое можно менять, изменяя продолжительность работы тиристора в течение полупериода. Время включения тиристора относительно базовой точки выражается в градусах и называется углом регулирования. Изменяя угол регулирования тиристоров, можно получить необходимое напряжение для плавного пуски двигателя.
По окончании процесса пуска тиристоры переводятся в режим постоянного включения или могут шунтироваться специальным контактором. Применение шунтирующего контактора позволяет повысить КПД устройства, увеличить срок службы тиристоров и исключить влияние полупроводниковых элементов на сеть.
Дополнительно к функциям управления пусковыми режимами и режимами останова, тиристорные преобразовательные устройства (ТПУ) снабжаются функциями защиты АД и защиты ТПУ от аварийных режимов. К стандартным функциям относятся:
защита от короткого замыкания на выходе ТПУ;
защита от заклинивания вала двигателя при пуске;
защита от перегрузки по току в рабочем режиме;
защита от недопустимого снижения напряжения на входе ТПУ;
защита от недопустимого повышения напряжения на входе ТПУ;
защита от обрыва фаз;
защита от невключения шунтирующего контактора (при наличии);
защита от несимметрии входного напряжения;
защита от обратного чередования фаз на входе;
тепловая защита двигателя;
защита от пробоя силового тиристора;
защита при потере управляемости тиристора.
Тепловая защита двигателя предполагает наличие встроенного в обмотку двигателя датчика температуры, а в системе управления предусматривается только наличие соответствующего входа и системы обработки. При отсутствии такого датчика осуществляется так называемая косвенная тепловая защита, которая основывается на той или иной тепловой модели двигателя, закладываемой изготовителем в программное обеспечение микроконтроллера.
Кроме рассмотренных функций, некоторые изготовители закладывают в ТПУ датчики сопротивления изоляции и возможность сушки обмотки постоянным или переменным током.
Интерфейсная часть системы управления содержит, как правило, две части: интерфейс оператора и интерфейс оборудования.
Интерфейс оператора выполняется обычно на основе жидкокристаллического индикатора (ЖКИ) и клавиатуры, расположенных на лицевой панели устройства. С помощью ЖКИ и клавиатуры производится программирование устройства и на ЖКИ выводится информация о режимах работы устройства. Ряд изготовителей недорогих устройств малой мощности реализует интерфейс оператора на основе светодиодной индикации и микропереключателей (устанавливаемых перемычек).
Интерфейс оборудования предполагает развитую систему ввода управляющих сигналов и вывода сигналов о состоянии устройства. Так, команды «пуск/стоп» могут приниматься в виде уровней напряжения, унифицированных токовых сигналов или сигналов типа «сухой контакт». Последние модели устройств содержат в своем составе последовательные каналы связи на основе шин RS-232, RS-432, CAN, через которые может производиться как программирование устройства, так и задание команд пуска/останова и считывание информации о режиме работы. Общее количество входных, выходных сигналов может достигать 15–20 каналов.
В настоящее время ТПУ выпускают такие мировые производители, как ABB, Siemens, Emotron AB, Softronic, Telemecanique, Ansaldo и ряд других. Выпуск ТПУ освоили и российские фирмы. Большинство фирм выпускает ТПУ в виде моноблока, в котором размещаются силовая часть, система управления и вспомогательные элементы. Следует отметить, что большинство зарубежных устройств не имеют в своем составе шунтирующего контактора, а в системе управления предусматриваются только элементы управления внешним контактором.
В качестве примера отечественного ТПУ можно привести ТПУ4К на мощности 55–160 кВт. Оно построено по классической схеме, имеет встроенный шунтирующий контактор и использует в качестве ядра системы управления микроконтроллер производства Atmel. Интерфейс оператора комбинированный, включающий в себя ЖКИ, подключаемую на время ввода параметров клавиатуру и ряд потенциометров, задающих величины токовых уставок для различных режимов работы. ТПУ имеет следующие функции защиты: от установившегося короткого замыкания на выходе ТПУ; от заклинивания вала двигателя при пуске; от перегрузки по току в рабочем режиме; от обрыва фаз; от невключения шунтирующего контактора; тепловая защита двигателя.
При срабатывании любой защиты ТПУ отрабатывает процедуру останова двигателя в соответствии с алгоритмом, оптимизированным для конкретного вида привода. ТПУ выполнен инвариантным по отношению к чередованию фаз на входе, поэтому не нуждается в защите от неправильной фазировки питающей сети. Из сервисных функций следует отметить наличие выхода, сигнализирующего о безаварийном окончании процесса пуска.
Большое разнообразие пусковых устройств различных производителей, имеющих примерно одинаковые технические характеристики, заставляет обращать внимание на стоимостные, эксплуатационные и «пользовательские» характеристики.
Примечателен тот факт, что изделия отечественных производителей существенно дешевле, чем зарубежные. Кроме того, некоторые отечественные производители, в отличие от иностранных, в цену устройства закладывают затраты на ввод в эксплуатацию, адаптацию изделия к конкретному приводу и оптимизацию его характеристик применительно к конкретному механизму. Наличие микроконтроллера позволяет отдельным отечественным производителям оперативно адаптировать алгоритмы и параметры под требования конкретного заказчика и конкретного вида привода, в то время как представители западных компаний таких услуг не предоставляют.
1) Устройство плавного пуска SIRIUS 3RW40 со встроенными функциями:
– полупроводниковая защита двигателя и собственная защита устройства от перегрузок
– регулируемое токоограничение для плавного пуска и остановки трёхфазных асинхронных двигателей
• Диапазон номинальной мощности от 75 до 250 кВт (при 400 В)
Вентиляторы, насосы, строительное оборудование, прессы, эскалаторы, системы кондиционирования воздуха, системы транспортировки, сборочные линии, компрессоры и
охладители, исполнительные механизмы.
2) Устройство плавного пуска PSS – универсальная серия. Фирма АВВ
3) Устройства плавного пуска и торможения Altistart 48. Фирма Schneider Electric
Интерес радиолюбителей к разработке устройств плавного пуска асинхронных электродвигателей не ослабевает. Появляются всё новые конструкции. Одна из них предлагается читателям.
Довольно большую популярность получили устройства плавного пуска на микросхеме КР1182ПМ1, например, описанное в [1]. Но этой микросхеме присущи особенности, не позволяющие достичь желаемых результатов без вынужденного усложнения схемы. Первая из них – максимальное напряжение сети не более 276 В. Для трёхфазного электродвигателя этого явно мало. Приходится занулять среднюю точку "звезды" его статора, чтобы ток протекал не между фазами, а между каждой фазой и нейтралью. Но в этом случае требуется регулировать ток всех трёх фаз, иначе через одну из обмоток в течение всего времени пуска будет протекать ток, многократно превышающий номинальный. А при включении обмоток "звездой" с изолированной средней точкой достаточно регулировать ток только в двух фазах.
Вторая особенность – необходимость внешней цепи для принудительной разрядки времязадающего конденсатора, так как ток его разрядки через саму микросхему КР1182ПМ1 весьма мал и устройство будет готово к повторному пуску двигателя только через довольно продолжительное время.
Недавно я решил разработать своё устройство плавного пуска. Сразу же решил не использовать в нём микроконтроллер, обойтись без узла определения прохождения тока через ноль (например, такого, как в [2]) и сделать его нечувствительным к порядку чередования фаз.
Схема предлагаемого устройства показана на рис. 1. Оно состоит из трёх функциональных блоков. Два из них одинаковы и представляют собой симисторные регуляторы действующего значения напряжения на нагрузке, управляемые с помощью оптронов. Применение в них симметричных дини-сторов VS3 и VS4 (точнее, аналогов таких динисторов – микросхем КР1167КП1Б) позволило значительно упростить регуляторы.
Третий блок управляет одновременно обоими регуляторами, формируя в процессе пуска необходимый закон изменения эффективного значения приложенного к двигателю напряжения. Для этого он соответствующим образом изменяет ток, протекающий через излучающие диоды оптронов U1-U4, управляющих регуляторами.
Фотодиоды этих оптронов работают в фотовольтаическом режиме, генерируемое ими напряжение постепенно открывает транзисторы VT1 и VT2. При этом сопротивление транзисторов уменьшается, благодаря чему в каждом полупериоде сетевого напряжения конденсаторы C7 и C8 успевают заряжаться до напряжения открывания динисторов VS3 и VS4 за всё меньшее время. Соответственно симисторы VS1 и VS2 в каждом полупериоде открываются всё раньше и всё большие части полупериодов поступают на обмотки электродвигателя M1.
К сожалению, максимальное напряжение на обмотках электродвигателя при использовании таких регуляторов получается на 20. 25 В меньше напряжения в сети. Поэтому предусмотрено реле K1, срабатывающее по окончании процесса пуска и соединяющее своими контактами электроды 1 и 2 симисторов VS1 и VS2. Этим достигается и уменьшение тепловыделения устройства плавного пуска в рабочем режиме двигателя.
Управляющий блок питается от одной из фаз трёхфазной сети через гасящий конденсатор C1 и выпрямитель на диодном мосте VD2-VD5. Учитывая, что напряжение на выходе моста незначительно по сравнению с сетевым напряжением, можно считать выпрямитель источником тока, значение которого около 20 мА задано реактивным сопротивлением конденсатора C1 и практически не зависит от нагрузки.
Резистор R5 ограничивает импульс тока зарядки конденсатора C1 в момент подключения устройства к сети. Рекомендую устанавливать этот резистор на высоте 5.7 мм над поверхностью монтажной платы, чтобы в случае его сгорания (например, в результате пробоя конденсатора Cl) плата не была повреждена. Резистор R6 необходим для разрядки конденсатора C1 после отключения от сети. Конденсатор C5 сглаживает пульсации.
Две цепи, состоящие из включённых последовательно излучающих диодов оптронов U1, U2 и U3, U4, соединены с плюсовым выводом этого конденсатора через постоянный резистор R2 и подстроечный R1. Ток через излучающие диоды зависит от сопротивления этих резисторов и значения выпрямленного диодным мостом VD2-VD5 напряжения, которое при неизменном выпрямленном токе зависит от сопротивления нагрузки выпрямителя. Первая часть этой нагрузки – цепь излучающих диодов. Вторая часть образована двумя включёнными последовательно параллельными интегральными стабилизаторами DA1 и DA2. Чем большая часть имеющихся 20 мА протекает через интегральные стабилизаторы, тем меньше остаётся на долю излучающих диодов.
Стабилизатор DA1 включён таким образом, что по мере зарядки конденсатора C4 сопротивление его участка катод-анод плавно увеличивается и ток через него уменьшается. При этом плавно увеличиваются выпрямленное напряжение и ток через излучающие диоды оптронов.
Стабилизатор DA2 задаёт начальное значение этого напряжения (устанавливают подстроечным резистором R9), которое достигается очень быстро после замыкания контактов выключателя SA1. Дальнейшее увеличение напряжения происходит плавно со скоростью, задаваемой сопротивлением подстроечного резистора R7 и ёмкостью конденсатора C4.
Для чего необходимо задавать начальное напряжение? Дело в том, что при слишком маленьком напряжении на обмотках электродвигателя ток через его обмотки уже течёт, а вал всё ещё остаётся неподвижным. При этом двигатель гудит, а обмотки нагреваются. Для предотвращения такого нежелательного режима и предусмотрена установка начального напряжения, обеспечивающего немедленное начало вращения вала. Необходимое значение этого напряжения сильно зависит от механической нагрузки на валу, поэтому его регулировку подстроечным резистором R9 следует производить в реальных условиях эксплуатации двигателя.
По завершении процесса пуска двигателя начинает действовать третья часть нагрузки выпрямителя на диодном мосте VD2-VD5 – соединённые последовательно стабилитрон VD1 и излучающий диод оптрона U5. Когда напряжение на выходе моста достигает напряжения стабилизации стабилитрона (24 В), сопротивление последнего резко уменьшается. Через него и излучающий диод оптрона U5 начинает течь ток. Фотодинистор оптрона открывается, и реле K1 срабатывает, шунтируя своими контактами симисторы VS1 и VS2. С этого момента на электродвигатель M1 поступает полное сетевое напряжение.
Оптроны 3ОД101В применены в качестве оптронов U1-U4 только потому, что они были у меня в наличии. Поскольку напряжение, создаваемое фотодиодом одного оптрона, оказалось недостаточным для открывания транзистора, число оптронов было удвоено. Как излучающие диоды, так и фотодиоды каждой их пары соединены последовательно. С другими диодными оптронами эксперименты не проводились. Вполне возможно, что они тоже подойдут. Существуют сдвоенные диодные оптроны (например, АОД134АС), а также такие, что содержат два фотодиода, освещаемых одним излучающим диодом (например, АОД176А). Возможно, стоит попробовать и их.
При подборе замены транзисторам 2SC4517 следует обратить внимание на максимальное напряжение коллектор- эмиттер. Оно не должно быть меньше 600 В. Это же касается и максимального напряжения в выключенном состоянии симисторов VS1 и VS2.
Транзисторы 2SC4517 в рассматриваемом устройстве можно применять без теплоотводов. Нужно ли отводить тепло от симисторов, зависит от мощности электродвигателя и от того, как часто планируется его включать.
Реле K1 – РП-64 [3] с катушкой на 220 В, 50 Гц. Его можно заменить, например, на реле R20-3022-96-5230 [4] c двумя группами нормально разомкнутых контактов и катушкой на 230 В переменного тока. Конденсаторы C2 и C3 – плёночные. Микросхемы КР1167КП1Б можно заменить импортными симметричными динисторами DB3.
Налаживание устройства плавного пуска следует начать с балансировки двух регуляторов. Для этого нужно, как показано на рис. 2, подать на него однофазное напряжение 220 В, подключив вместо электродвигателя M1 две лампы накаливания на 220 В мощностью 40.60 Вт. Выводы конденсатора C4 необходимо замкнуть перемычкой.
Подав питающее напряжение, установите подстроечным резистором R9 минимальную яркость свечения ламп, а подстроечным резистором R1 добейтесь одинаковой интенсивности их свечения. Отключив питание, удалите перемычку с конденсатора и снова включите устройство, контролируя напряжение на конденсаторе C5. Когда оно достигнет 25.26 В, должно сработать реле K1. Если с этим всё в порядке, можно проверить напряжение на лампах. Перед срабатыванием реле K1 оно должно быть не менее 190 В. Если напряжение на лампах меньше, можно уменьшить сопротивление резистора R2, но только так, чтобы не был превышен максимально допустимый ток управления оптронов U1-U4.
Теперь к устройству можно подключить электродвигатель и подать трёхфазное напряжение. На мой взгляд, подборку желательной продолжительности разгона лучше начинать с минимальной скорости нарастания напряжения на двигателе (движок подстроечно-го резистора R7 в верхнем по схеме положении) и минимального стартового напряжения (движок подстроечного резистора R9 в нижнем по схеме положении).
Хочу обратить внимание, что технически несложно отказаться от стабилизатора DA2, просто исключив его и относящиеся к нему элементы из схемы и соединив вместе провода, шедшие к аноду и катоду стабилизатора. Для регулировки стартового напряжения в этом случае устанавливают подстроеч-ные резисторы R1′ и R2′, показанные на схеме рис. 1 штриховыми линиями. Ноя бы не советовал так делать. Во-первых, это неудобно, поскольку оперировать придётся двумя подстроечными резисторами по очереди, стремясь не нарушать равенства значений напряжения на обмотках двигателя. Во-вторых, далеко не все подстроечные резисторы способны выдержать приложенное к ним напряжение около 400 В. В-третьих, в рассматриваемом устройстве резисторы R1′ и R2′, в отличие от других подстроечных резисторов, будут находиться под высоким напряжением относительно нейтрали трёхфазной сети, что может представлять опасность при случайном прикосновении к ним.
В заключение хочу сказать, что устройство плавного пуска не может заменить частотный регулятор скорости и продолжительное время поддерживать пониженную частоту вращения вала электродвигателя. С его помощью можно лишь увеличить время разгона до номинальных оборотов и снизить пусковой ток. Пребывание электродвигателя в режиме разгона дольше необходимого приведёт к перегреванию обмоток, потому что текущий через них в этом режиме ток хотя и значительно меньше стандартного пускового тока, но всё-таки превышает номинальный. В таком режиме двигатель очень чувствителен к нагрузке на валу и может остановиться при её незначительном повышении.
Некоторой аналогией устройства плавного пуска электродвигателя можно считать механизм сцепления в автомобиле. Постоянная работа асинхронного электродвигателя в режиме разгона подобна движению автомобиля с не полностью включённым сцеплением.
1. Аладышкин Б. Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя. – http://electrik.info/main/praktika/278-primenenie-mikrosxemy-kr1182pm1-plavnyj-pusk.html.
2. Плавный пуск трёхфазного асинхронни-ка. – http://kazus.ru/forums/showthread. php?t=12618.
3. Промежуточное реле РП-64. – http://www.rele.ru/d/d7323c0e96dc68ab5ffed6ea85cd1801.pdf.
4. R20 промышленные малогабаритные реле. – Дата публикации: 14.10.2013
Мнения читателей
- Павел / 21.02.2019 – 17:02
Моя новая почта: pavel0071234@gmail.com - Рустем / 04.12.2018 – 04:57
Здравствуйте, Павел. Пытался отправить Вам письмо на электронку. Почта ругнулась на некорректный адрес. - Pavel / 29.11.2017 – 17:37
Меня несколько раз об этом спрашивали в письмах. Я на таких двигателях не экспериментировал, а те кто меня об этом спрашивали или не решились, или не отписались о результатах. К сожалению. Теоретически должно работать, а практически могут оказаться какие-нибудь тонкости, которые осложнят жизнь. Решайте сами. Если решитесь и возникнут сложности, готов помочь советом. - Александр / 23.09.2017 – 12:20
Здравствуйте Павел! Есть ли опыт применения вашего УПП на асинхронных электродвигателях на холстом ходу мощностью 35-45 кВат. - Вячеслав / 05.09.2017 – 20:36
Года четыре назад делал по этой схеме плавный пуск. Паше отдельное спасибо, сразу все не заработало, Паша помог проконсультировал и всё заработало. Почему пишу))). Так вот позвонил клиент которому делали, очень доволен все работает по сей день, и хочет что бы ему ещё сделали на двух кранах плавный пуск. Кстати два двигателя по 10квт работают одновременно. - Pavel / 28.04.2017 – 14:30
Здравствуйте. Рисунок печатной, разработанный журналом "Радио", можно найти здесь: ftp://ftp.radio.ru/pub/2016/01/64.pdf С транзисторными оптопарами опытов не проводил. Будут ли они работать – не знаю. - jurgen / 24.04.2017 – 20:53
народ, а можно попросить поделиться печаткой? заранее благодарен tele-ga@yandex.ru - jurgen / 24.04.2017 – 20:06
вопрос, а нельзя -ли применить оптопары на выходе которых транзистор. они очень распространены к примеру PC817 ? - Burner / 19.12.2016 – 17:02
Автору решпект. Он таки это сделал, и более того – у него заработало! Насчет до какой мощности можно использовать эту схему – подозреваю, что примерно до 3 кВт без вопросов – сли пусковой момент небольшой. Дальше чем больше движок, тем меньше пусковой момент допустим и тем сильнее он нагреется при пуске – т. е. тем реже его можно запускать. По ходу, в промышленных УПП используются довольно извращенные алгоритмы – т. е. сильно сложнее использованного здесь. - vitaliy / 16.05.2016 – 13:40
Здравствуйте!Не могу добиться разгона дв. т.к. сразу включается реле К1.Как сделать задержку вкл.К1 на 0.5-1.5сек.За ответ благодарен !Ответ на vimass53@mail.ru Спасибо! - tika / 05.05.2015 – 14:00
Собрал уже 5 пусковых -все работает.Все двигатели 7,5КВ. Спасибо за проект. А главное не дорого. - Pavel / 08.04.2015 – 09:43
Всех желающих получить консультацию по плавному пуску прошу писать мне на почту. На эту страничку я захожу редко, но все кто писал мне на почту получили ответы. Схема рабочая, много людей ее повторило. Есть видео работы. Напоминаю мой e-mail: 007pavel@rambler.ru - Олег / 20.06.2014 – 19:31
Добрый Вечер Павел! Заинтересовался Вашим УПП. Наша задачка: обеспечить правильный запуск/остановку асинхронного двигателя 35кВт, 400В, который является приводом через понижающий редуктор молота пресса, который, в свою очередь, "стучит" два удара в секунду. Кроме этого на двигатель еще посажены как нагрузки три (х2 стороны) цепные передачи, которые приводят в движение шестерни приводов подачи сырья. Вопрос: сможем ли мы использовать Вашу схему УПП заменив симисторы на более мощные? Возможно, что-то еще. С уважением, Олег / E-mail: oleg.garanyuk@gmail.com / г.Киев - Валерий / 21.02.2014 – 16:28
Народ скиньте рисунок плата сие чуда. Спасибо. Tikaru@mail.ru - Pavel / 03.01.2014 – 16:33
Здравствуйте, RipV. Номинал резистора в схеме на страницах журнала указан неправильно. Там и должно было быть 0,5W. Низкое напряжение на лампах может быть по нескольким причинам. В том числе – маленький коэффициент усиления транзисторов, деградация оптронов, параллельное (а не последовательное) соединение пар оптронов. Возможные методы решения проблемы: 1) Попробовать поставить транзисторы с бОльшим коэффициентом усиления (при этом не следует применять составные транзисторы). 2) Включить в последовательные цепочки не 2 а 3 оптрона. 3) Исключить из схемы подстроечный резистор R1, а ВСЕ четыре оптрона соединить последовательно. (В этом случае ток через резистор R2 уменьшится и будет достаточно конденсатора С1 емкостью 0,33 мкФ.) Мою схему повторили несколько человек, и у них этих проблем не возникло. Один из повторивших даже прислал видео. У меня есть несколько лишних, заведомо подходящих, оптронов, если нужно, могу Вам прислать в подарок. Для того, чтобы их получить, напишите мне на e-mail: 007Pavel@rambler.ru С уважением, Павел. - RipV / 30.12.2013 – 14:47
Здравствуйте! сделал по вашей схеме плавный пуск, с номиналами что указаны в схеме. У меня получилось напряжение на лампах 130В всего, а на конденсаторе С5 23В. При уменьшении сопротивления R2 напряжение на конденсаторе уменьшается еще сильнее – реле не срабатывает. Я увеличил емкость гасящего конденсатора до С1 0.47 мкФ и поставил сопротивление R2 1кОм 0.5Вт. При таких номиналах у меня напряжение на лампах выросло до 170В, на конденсаторе 25.1В реле срабатывает, но теперь греется резистор R2. R1 у меня многооборотник на 50 Ом. Скажите что я делаю не так. Как настроить устройство. чтоб было 190В на лампах и резистор так сильно не грелся. - Pavel / 27.11.2013 – 09:25
При условии использования указанных на схеме симисторов, мощность двигателя может быть примерно от 0,2 до 5. 7 кВт. При установке более мощных симисторов мощность двигателя может быть пропорционально увеличена. При этом предпочтительнее использовать импортные симисторы. - 2010kira2010 / 01.11.2013 – 21:44
Здравствуйте! А на какую мощность стоит рассчитывать с подобным УПП?
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.
Назначение
Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:
- невозможность согласования крутящего момента двигателя с моментом нагрузки,
- высокий пусковой ток.
Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.
Принцип действия устройство плавного пуска
Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.
Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.
Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.
Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами "номинал в номинал". Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.
Выбор устройства плавного пуска
При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).
Как реализуется плавный пуск
Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:
- Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
- Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:
а) автотрансформатора или реостата;
б) ключевыми схемами на базе тиристоров или симисторов.
Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.
Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.
Критерии выбора софтстартера
По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:
- Мощность.
- Количество управляемых фаз.
- Обратная связь.
- Функциональность.
- Способ управления.
- Дополнительные возможности.
Главным параметром УПП является величина Iном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил. Тогда Iном софтстартера должен быть в 8-10 раз больше.
Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.
Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.
УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.
Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.
Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.
Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).
Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.
Зачем нужно устройство плавного пуска (софтстартера)
Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.
Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:
некоторая электротехника может самопроизвольно отключаться;
возможен сбой оборудования и т. д.
Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.
Что такое пусковой ток
В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.
Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.
В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.
Способы защиты электродвигателя
Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.
В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.
Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.
В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.
Виды устройств плавного пуска
На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.
Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.
Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.
Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.
Зачем же нужно устройство плавного пуска?
Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.
Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)