Перечислите способы защиты металлов от коррозии

Коррозионная стойкость — способность материала сопротивляться воздействию агрессивной среды. Она может определяться качественно и количественно: изменением массы образцов, показателей их физических и механических свойств, уменьшением толщины образцов, объема выделившегося водорода (или поглощенного кислорода) и др.

Коррозия причиняет огромные убытки. В результате нее металлические изделия теряют свои ценные технические свойства. Поэтому имеют очень большое значение меры борьбы с коррозией.

Они весьма разнообразны и включают следующие методы:

1. Защитные поверхностные покрытия металлов. Они бывают металлические и неметаллические. Металлические покрытия в свою очередь подразделяют на: гальванические; полученные, погружением в расплав; плакированием металлов; диффузионные и изотермически напыленные. Неметаллические покрытия бывают: силикатные (эмалированные); фосфатные; керамические, полимерные: лакокрасочные и порошкообразные.

3. Химический способ — применение ингибиторов коррозии.

4. Обескислороживание воды.

5. Создание сплавов с антикоррозионными свойствами.

Металлические гальванические покрытия изолируют металл от внешней среды. Их наносят электролитическим способом, подбирая состав электролита, плотность тока и температуру среды. Метод позволяет получать очень тонкие надежные слои металлов (цинк, никель, хром, свинец, олово, медь, кадмий и др.) и является экономичным. Покрытие железных изделий этими и другими металлами помимо защиты, придает им красивый внешний вид.

Тщательная очистка покрываемого изделия от загрязнений является одним из важных условий получения качественного покрытия. К загрязнениям относятся: жиры, масла и окислы. Обработку покрываемой поверхности производят тремя способами: механическим (шлифовка, песко- и дробеструйная очистка), химическим и электрохимическим (обезжиривание, травление и электрохимическое полирование). Хранение подготовленных изделий до покрытия не более 4 — 6 часов.

Например, кровельное железо предохраняют от коррозии цинком. Цинк, хотя и является более активным металлом, чем железо, покрыт снаружи защитной окисной пленкой. При ее повреждении возникает гальваническая пара железо-цинк. Катодом (положительным) служит железо, анодом (отрицательным) — цинк. Электроны переходят от цинка к железу, цинк растворяется, но железо остается защищенным до тех пор, пока слой цинка не разрушится до конца.

Методом погружения деталей в расплав наносятся например, покрытия из цинка и олова. Защитный слой (d = 10 — 50 мкм) имеет диффузионное сцепление с основой. Недостатки метода — трудность достижения равномерной толщины покрытия, а также большой расход металла, который например, при использовании цинка для слоя толщиной 25 мкм составляет до 600 г/м2.

Диффузионный способ защиты основан на изменении химического и фазового состава поверхностного слоя металла при вхождении в него подходящих элементов, которые обеспечивают коррозионную стойкость. Стали от атмосферной коррозии сохраняют цинкованием, алитирование применяют для защиты от окисления при повышенных температурах. Кремниевые покрытия (силицирование) используют для предохранения жаростойких металлов, борирование — для повышения износостойкости и прочности.

Плакирование металлов используют для изготовления биметаллических листов типа сталь-никель, сталь-титан, сталь-медь, сталь-алюминий. Его проводят методами совместного горячего пластического деформирования, электродуговой и электрошлаковой наплавкой, сваркой взрывом.

Напыляемые покрытия получают газотермическим, плазменным, детонационным и вакуумным способами. При этом металл распыляется в жидкой фазе в виде капель и осаждается на покрываемую поверхность. Метод прост, позволяет получать слои любой толщины с хорошим сцеплением с основным металлом. При вакуумном способе материал покрытия нагревают до состояния пара, и паровой поток конденсируется на поверхности изделия.

Методы напыления позволяют защищать сборные конструкции. Однако расход металла при этом очень значительный, а покрытие получается пористым и для обеспечения противокоррозионной защиты требуется дополнительное уплотнение термопластическими смолами или другими полимерными материалами. При восстановлении изношенных деталей машин пористость является весьма ценной, так как служит носителем смазочных материалов.

Стеклоэмалями называются стекла, наносимые тонким слоем на поверхность металлических предметов с целью защиты от коррозии, придания им определенной окраски и улучшения внешнего вида, создания отражающей поверхности и пр.

Производство эмалированных изделий включает в себя следующие операции: высокотемпературный синтез-варка эмалевых стекол (фриттов); приготовление из них порошков и суспензий; подготовка поверхности металлических изделий и собственное эмалирование — нанесение суспензии на поверхность металла, сушка и оплавление порошкообразного стекла в покрытие.

Стальные изделия грунтовой эмалью покрываются обычно двух- и трехкратно. Общая толщина получаемого покрытия в среднем равна 1,5 мм. После сушки полученного грунта при температуре 90 – 100 °С деталь далее обжигают при 850 – 950 °С. С целью увеличения долговечности эмалевых покрытий стальных труб в теплоэнергетике их наносят по слою напыленного алюминия.

В основе фосфатирования стальных изделий лежит процесс образования нерастворимых в воде двух- и трехзамещенных фосфатов железа, цинка и марганца. Они образуются при погружении изделий в разбавленный раствор фосфорной кислоты с добавкой однозамещенных фосфатов вышеперечисленных металлов. Получающийся фосфатный пласт хорошо сцеплен с металлической основой. Эти покрытия пористы, поэтому на них дополнительно нужно нанести лак или краску. Толщины фосфатных слоев составляют 10 – 20 мкм. Фосфатирование нужно вести окунанием или распылением.

В качестве керамической защиты используются покрытия на основе оксидов некоторых р-элементов, также кремниземистые, алюмисиликатные, магнезильные, карборундовые и другие. Получили развитие новые материалы, называемые керметы. Это металлокерамические смеси или комбинации металлов с керамикой, например Al — Al2O3 (САП), V – Al — Al2O3 (твэл). Они находят применение в реакторостроении. По сравнению с простой керамикой керметы обладают большей прочностью и пластичностью, имеют очень высокую сопротивляемость механическим и тепловым ударам.

Лакокрасочные покрытия наносят: распылением воздухом, высоким давлением и в электрическом поле; электроосаждением, струйным обливом, окунанием, валиками, кистью и т. д. Искусственная сушка красок может выполняться горячим воздухом, в камерах, инфракрасным и ультрафиолетовым излучениями.

Нанесение слоев из порошков полимеров осуществляют газопламенным, вихревым и электростатическим напылением. При температуре 650 –700 °С порошкообразный полимер размягчается и при ударе о подготовленную и нагретую до температуры давления полимера поверхность детали сцепляется с ней, образуя сплошное покрытие. Для напыления успешно используют полиэтилен, поливинилхлорид, фторопласты, нейлон и другие полимерные материалы.

Для катодной защиты стали в почве и нейтральных водных растворах минимальный потенциал составляет 770 – 780 мВ. Предусматривается одновременная пленочная изоляция поверхности изделия от контакта с коррозионной средой.

Анодную защиту применяют только для оборудования из сплавов, склонных к пассивации в данном технологическом растворе. Коррозия этих сплавов в инертном состоянии протекает гораздо медленнее. Используется источник постоянного тока с автоматическим регулятором потенциала анодной поляризации защищаемого металла.

В зависимости от агрессивности среды при анодно-протекторной защите применяют катоды из кремнистого чугуна, молибдена, сплавов титана и нержавеющих сталей. Так предохраняют теплообменники из нержавеющих сталей, работающие в 70 – 90 %-ной серной кислоте при температуре 100 –120 °С.

Ингибиторы коррозии — это вещества, замедляющие скорость разрушения металлических изделий. Даже в малом количестве они заметно снижают скорость обоих механизмов коррозии. Их вводят в рабочую агрессивную среду или наносят на детали. Они адсорбируются на металлической поверхности, взаимодействуют с ней с образованием защитных пленок и тем самым препятствуют протеканию разрушительных процессов. Некоторые антиоксиданты способствуют удалению кислорода (или другого окислителя) из рабочей зоны, что также снижает скорость коррозии.

Читайте также:  Как готовят жареное мороженое

Ингибиторами служат многие неорганические и органические соединения и разнообразные смеси на их основе. Их широко применяют при химической очистке паровых котлов от накипи, снятии окалины методом кислотной промывки, а также при хранении и перевозке неорганических сильных кислот в стальной таре и других. Например, для солянокислотной промывки теплосилового оборудования используют ингибиторы марок И-1-А, И-1-В, И-2-В (смесь высших пиридиновых оснований).

Создание сплавов с антикоррозионными свойствами заключается в легировании сталей такими металлами, как хром. При этом получают хромистые нержавеющие устойчивые к коррозии стали. Усиливают антикоррозионные свойства сталей добавками никеля, кобальта и меди. Легирование преследует достижение их высокой коррозионной стойкости в рабочей среде и обеспечение заданного комплекса физико-механических характеристик. Легирование сталей такими легкопассивирующимися металлами, как алюминий, хром, никель, титан, вольфрам и молибден придает первым склонность к пассивации при условии образования твердых растворов.

Для борьбы с МКК аустенитных сталей применяют:

а) снижение содержания углерода, что исключает образование хромистых карбидов;

б) введение в сталь более сильных, чем хром, металлов-карбидообразо­вателей (титан и ниобий), что связывает углерод в их карбиды и исключает обеднение границ зерен по хрому;

в) закалку сталей от 1050 – 1100 °С, обеспечивающую перевод хрома и углерода в твердый раствор на их основе;

г) отжиг, обогащающий приграничные зоны зерен свободным хромом до уровня требуемой коррозионной стойкости.

Вопросы для самостоятельной работы. Основы теории коррозии, виды коррозии металлов, борьба и защита электрооборудования от коррозии Радиационные повреждения металлов и сплавов, борьба с радиационными повреждениями; исправление радиационных повреждений. Сварка и пайка в энергетике. Способы, сущность, преимущества и недостатки. Литература: Материаловедение. (Под общей ред. Б.Н. Арзамасова и Г.Г. Мухина) 3-е изд. переработанное и дополненное. М: Изд-во МГТУ им. Н.Э.Баумана, 2002.

Не нашли то, что искали? Воспользуйтесь поиском:

Интенсивное развитие производства стали, как правило, предполагает поиск новых средств и способов, которые позволяли бы предотвращать разрушение изделий из металла. Создание инновационных методик, связанных с защитой от коррозии, — это постоянный процесс. Изделия, сделанные практически из любого металла, могут терять свою работоспособность из-за воздействия химических и физических факторов извне. Последствия этого можно увидеть в виде ржавчины.

Разновидности коррозии

Перед тем как защитить металл от ржавчины, следует узнать о существующих видах. Способ обеспечения антикоррозийной защиты находится в прямой зависимости от условий применения деталей. Потому принято выделять следующие типы:

  • коррозия, которая связана с явлениями атмосферного характера;
  • разрушение структуры металла в воде из-за наличия в ней солей и бактерий;
  • деструктивные процессы, происходящие в грунте (почвенная коррозия).

Способы антикоррозионной защиты при этом должны подбираться в индивидуальном порядке, руководствуясь тем, в каких условиях будет эксплуатироваться изделие из металла.

Что касается типов поражения конструкций, то они могут быть следующими:

  • ржавчина находится на всей поверхности изделия отдельными участками или сплошным покрытием;
  • имеет вид пятен и проникает вглубь элемента;
  • разрушает молекулы металла, приводя к трещинам;
  • масштабное ржавление, при котором разрушается не только поверхность, но и более глубокие слои.

Типы разрушения бывают и комбинированными. В некоторых ситуациях их очень сложно определить на глаз, особенно при точечном ржавлении.

Принято выделять химическую коррозию. При контакте с нефтяными продуктами, спиртами и иными агрессивными веществам происходит особая реакция, которая сопровождается высокой температурой и выделениями газа.

При электрохимической коррозии поверхность металлического сплава соприкасается с водой (электролитом). При этом осуществляется диффузия материала. Электролит обуславливает появление электротока, а электроны металла замещаются и приходят в движение, в результате чего возникает ржавчина.

Обеспечение защиты от коррозии и выплавка стальных изделий — две взаимосвязанные вещи. Коррозия причиняет существенный ущерб постройкам хозяйственного или промышленного назначения. Кроме того, этот процесс может привести к катастрофе, если говорить, например, об опорах электропередач, мостах, заграждениях и т. д.

Защита от коррозии в промышленности и быту

Необходимо обеспечить металлу надежную защиту от коррозии. Все условия, когда требуется защита металлов от коррозии, кратко можно поделить на промышленные и бытовые.

В промышленности существует несколько вариантов антикоррозийной защиты:

  1. Пассивация. В процессе производства в сталь добавляются другие металлические сплавы (молибден, никель, ниобий). Эти материалы характеризуются отличными эксплуатационными свойствами и высокой стойкостью к агрессивным воздействиям. Эти разновидности стали принято называть легированными.
  2. Нанесение на поверхность стали каких-то других металлов. При этом на изделии образуется защитное покрытие. Зачастую для данной цели применяется алюминий, кобальт и хром.
  3. Применение специальных протекторов и анодов. При контакте детали с водой происходит разрушение протектора, который образует защитное покрытие. Такая методика часто используется в производстве деталей для морских буровых установок и судов.

Промышленные способы обеспечения антикоррозийной защиты очень разнообразны. К ним относится и покрытие специальной стекловолоконной эмалью, и химическая защита, и многие другие.

Антикоррозийная защита материала в домашних условиях подразумевает применение ЛКМ-покрытий и химических средств. Свойства защитного плана обеспечивают сочетанием разных элементов: смол на основе силикона, ингибиторов, полимеров, металлической стружки и пудры.

Следует отметить, что перед окрашиванием детали, ее нужно обработать специальным преобразователем коррозии или грунтовкой, иначе ее эксплуатационные свойства будут быстро уменьшаться.

Сегодня в продаже встречается несколько разновидностей преобразователей ржавчины:

  1. Средства-грунтовки. Характеризуются высокой адгезией с металлическими поверхностями, способствуют выравниванию покрытия перед покраской. Во многих грунтовках содержатся ингибиторы, тормозящие коррозийные процессы. Кроме того, заблаговременное нанесение слоя грунтовки позволяет сэкономить на окрашивании.
  2. Химические препараты. Преобразуют окись железа в более безопасные вещества, которым не страшна коррозия. Такие средства называются стабилизаторами.
  3. Составы, преобразующие ржавчину в обычные соли.
  4. Масла и смолы, уплотняющие и связывающие ржавчину, обеспечивая ее нейтрализацию.

Специалисты советуют подбирать краску и грунтовку какого-то одного производителя, чтобы их химический состав не имел особых отличий.

Краски для покрытия металлических изделий

Краски, предназначенные для обработки металлических поверхностей, бывают обычными и термостойкими. В большинстве случаев применяются три типа составов: эпоксидные, акриловые и алкидные. Есть и специальные краски антикоррозийного типа, которые обладают следующими достоинствами:

  • эффективно защищают покрытие от атмосферных воздействий и перепадов температур;
  • с легкостью наносятся валиком, кисточкой или распылителем;
  • многие из них являются быстросохнущими;
  • обладают широким выбором расцветок;
  • отличаются долговечностью.

Что касается самых недорогих и доступных средств, то тут следует обратить внимание на обыкновенную серебрянку. В составе этого покрытия есть алюминиевая пудра, образующая защитную пленку на обработанном им изделии.

Этапы работ по борьбе с коррозией в быту

Методы борьбы с коррозией металлов предполагают определенную последовательность. Следует перечислить основные этапы этой работы:

  1. Перед тем как наносить преобразователь или грунтовую смесь, поверхность необходимо полностью очистить от маслянистых пятен, следов коррозии и различного рода загрязнений. Для этих мер можно воспользоваться болгаркой или щетками с металлическим ворсом.
  2. После этого можно приступать к нанесению слоя грунтовки, которая затем должна впитаться и как следует просохнуть.
  3. Далее на поверхность наносится пара слоев. Перед тем как наносить второй слой, нужно дождаться полного высыхания первого. В процессе работы обязательно нужно пользоваться защитными очками, перчатками и специальным респиратором, так как все применяемые вещества и составы являются токсичными.
Читайте также:  Шуруповерт для рыболовного бура

Антикоррозийная защита металлических сплавов — очень непростой процесс. В промышленности он начинается на стадии расплавления стали. Производители ЛКМ-покрытий занимаются совершенствованием своей продукции, увеличивая ее долговечность и стойкость.

Современная защита металлов от коррозии базируется на следующих методах:

повышение химического сопротивления конструкционных материалов,

изоляция поверхности металла от агрессивной среды,

понижение агрессивности производственной среды,

снижение коррозии наложением внешнего тока (электрохимическая защита).

Эти методы можно разделить на две группы. Первые два метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него защитных покрытий). Последние два метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования.

При применении первых двух методов не могут быть изменены состав сталей и природа защитных покрытий данного металлоизделия при непрерывной его работе в условиях меняющейся агрессивности среды. Вторая группа методов позволяет при необходимости создавать новые режимы защиты, обеспечивающие наименьшую коррозию изделия при изменении условий их эксплуатации. Например, на разных участках трубопровода в зависимости от агрессивности почвы можно поддерживать различные плотности катодного тока или для разных сортов нефти, прокачиваемой через трубы данного состава, использовать разные ингибиторы.

Однако в каждом случае приходится решать каким из средств или в каком их сочетании можно получить наибольший экономический эффект.

Широко применяются следующие основные решения защиты металлических конструкций от коррозии:

1. Защитные покрытия

По принципу защитного действия различают анодные и катодные покрытия. Анодные покрытия имеют в водном растворе электролитов более отрицательный электрохимический потенциал, чем защищенный металл, а катодные — более положительный. Вследствие смещения потенциала анодные покрытия уменьшают или полностью устраняют коррозию основного металла в порах покрытия, т.е. оказывают электрохимическую защиту, в то время как катодные покрытия могут усиливать коррозию основного металла в порах, однако ими пользуются, т.к. они повышают физико-механические свойства металла, например износостойкость, твердость. Но при этом требуются значительно большие толщины покрытий, а в ряде случаев дополнительная защита.

Металлические покрытия разделяются также по способу их получения (электролитическое осаждение, химическое осаждение, горячее и холодное нанесение, термодиффузионная обработка, металлизация напылением, плакирование).

Данные покрытия получают нанесением на поверхность различных неметаллических материалов — лакокрасочных, каучуковых, пластмассовых, керамических и др.

Наиболее широко используются лакокрасочные покрытия, которые можно разделить по назначению (атмосферостойкие, ограниченно атмосферостойкие, водостойкие, специальные, маслобензостойкие, химически стойкие, термостойкие, электроизоляционные, консервационные) и по со составу пленкообразователя (битумные, эпоксидные, кремнийорганические, полиуретановые, пентафталевые и др.)

Покрытия, получаемые химической и электрохимической обработкой поверхности

Эти покрытия представляют собой пленки нерастворимых продуктов, образовавшихся в результате химического взаимодействия металлов с внешней средой. Поскольку многие из н их пористы, они применяются преимущественно в качестве подслоев под смазки и лакокрасочные покрытия, увеличивая защитную способность покрытия на металле и обеспечивая надежное сцепление. Методы нанесения — оксидирование, фосфатирование, пассивирование, анодирование.

2. Обработка коррозионной среды с целью снижения коррозионной активности.

Примерами такой обработки могут служить: нейтрализация или обескислороживание коррозионных сред, а также применение различного рода ингибиторов коррозии, которые в небольших количествах вводятся в агрессивную среду и создают на поверхности металла адсорбционную пленку, тормозящую электродные процессы и изменяющую электрохимические параметры металлов.

3. Электрохимическая защита металлов.

Путем катодной или анодной поляризации от постороннего источника тока или присоединением к защищаемой конструкции протекторов, потенциал металла смещается до значений, при которых сильно замедляется или полностью прекращается коррозия.

  • 4. Разработка и производство новых металлических конструкционных материалов повышенной коррозионной устойчивости путем устранения из металла или сплава примесей, ускоряющих коррозионный процесс (устранение железа из магниевых или алюминиевых сплавов, серы из железных сплавов и т.д.), или введения в сплав новых компонентов, сильно повышающих коррозионную устойчивость (например хрома в железо, марганца в магниевые сплавы, никеля в железные сплавы, меди в никелевые сплавы и т.д.).
  • 5. Переход в ряде конструкций от металлических к химически стойким материалам (пластические высокополимерныме материалы, стекло, керамика и др.).
  • 6. Рациональное конструирование и эксплуатация металлических сооружений и деталей (исключение неблагоприятных металлических контактов или их изоляция, устранение щелей и зазоров в конструкции, устранение зон застоя влаги, ударного действия струй и резких изменений скоростей потока в конструкции и др.).

Вопросам проектирования антикоррозионной защиты строительных конструкций уделяют серьезное внимание как у нас в стране, так и за рубежом. Западные фирмы при выборе проектных решений тщательно изучают характер агрессивных воздействий, условия эксплуатации конструкций, моральный срок службы зданий, сооружений и оборудования. При этом широко используются рекомендации фирм, производящих материалы для антикоррозионной защиты и располагающих лабораториями для исследования и обработки защитных систем из выпускаемых ими материалов.

Актуальность решения проблемы противокоррозионной защиты диктуется необходимостью сохранения природных ресурсов, защиты окружающей среды. Эта проблема находит широкое отражение в печати. Издаются научные труды, проспекты, каталоги, устраиваются международные выставки с целью обмена опытом между развитыми странами мира.

Таким образом необходимость исследования коррозионных процессов является одной из наиболее важных проблем.

Очистка и подготовка поверхности

Идеальная защита от коррозии на 80% обеспечивается правильной подготовкой поверхности, и только на 20% качеством используемых лакокрасочных материалов и способом их нанесения.

1. Очистка стали и удаление ржавчины

Длительность и эффективность покрытия по стальным поверхностям зависят в очень большой степени от того, как тщательно подготовлена поверхность для покраски.

Подготовка поверхности заключается в предварительной подготовке, имеющей целью устранение окалины, ржавчины и посторонних веществ, если они имеются, со стальной поверхности перед нанесением заводской грунтовки или праймера.

Вторичная подготовка поверхности направлена на устранение ржавчины или посторонних веществ, если они имеются, со стальной поверхности с заводской грунтовкой или праймером до нанесения антикоррозийной покрасочной системы.

Стальная поверхность может быть очищена от ржавчины следующими способами:

Очистка проволочной щёткой:

Очистка проволочной щеткой, обычно осуществляемая вращающимися проволочными щётками, является обычным методом, не подходящим для удаления окалины, но подходящим для подготовки сварных швов. Главным недостатком является то, что обрабатываемая поверхность не полностью освобождается от продуктов коррозии и начинает лосниться и становится жирной. Это уменьшает адгезию грунтовок и эффективность покрасочной системы.

Обрубка или механическое скалывание обычно осуществляется в сочетании с очисткой проволочной щёткой. Это иногда подходит для местного ремонта при применении обычных или специальных покрасочных систем. Это не подходит для общей подготовки поверхностей для покраски эпоксидными и красками на основе хлорированной резины. Скалывание может использоваться для устранения толстого слоя ржавчины и обеспечивает экономию при проведении последующей пескоструйной очистки.

Читайте также:  Как правильно точить опасную бритву

Удалить ржавчину, краску и т.д. из углов и выступов для достижения чистой шероховатой поверхности.

Пламенная очистка поверхности включает устранение ржавчины путём термической обработки при использовании специального оборудования (на ацетилене или пропане с кислородом). Это устраняет почти всю окалину, но в меньшей степени ржавчину. Поэтому этот метод не может отвечать требованиям современных покрасочных систем.

Шлифовка подразумевает использование вращающихся кругов , покрытых абразивным материалом. Она используется для мелкого ремонта или для удаления мелких инородных частиц. Качество этих шлифовальных кругов было в значительной степени улучшено, и это может обеспечить хороший стандарт подготовки поверхности.

Способ поверхностной очистки вручную во время которой загрунтованной и покрашенной поверхности придаётся шероховатость и устраняется любое видимое загрязнение (за исключением масляных загрязнений и следов ржавчины).

лёгкая очистка, цель: огрубление новой поверхности

Абразив: мелкий (0,2-0,5мм)

тяжёлая очистка ( ISO Sa1), цель: удаление слоёв ветхого покрытия

Абразив: мелкий до среднего (0,2-0,5/0,2-1,5мм)

Столкновение потока абразивного материала, обладающего высокой кинетической энергией, с подготовленной поверхностью. Этот процесс управляется либо вручную струёй, либо автоматически с помощью колеса с лопатками, и это является наиболее основательный метод очистки от ржавчины. Пескоструйная очистка с помощью центрифуги, сжатого воздуха и вакуума являются хорошо известными типами.

Частицы являются всего лишь практически сферическими и твёрдыми и должны содержать минимальное количество посторонних примесей и дроби нестандартной формы.

Грунтовки, использующиеся после дробеструйной очистке, должны быть проверены по своим эксплуатационным характеристикам.

Частицы должны иметь угловатую форму с острыми режущими гранями, должны быть удалены "половинки". Если в спецификации не указано что-либо иное, должен быть использован песок минерального происхождения.

Влажная (абразивная) (пескоструйная) очистка:

Влажная очистка под очень высоким давлением

Давление = более 2000 бар

скорость очистки = макс. 10-12 м2/ час в зависимости от материала, подлежащего удалению.

Использование: полное удаление всех покрытий и ржавчины. Результат сопоставим с сухой пескоструйной очисткой, но со вспышками ржавчины после высыхания.

Влажная очистка под высоким давлением

Давление = до 1300 бар

Скорость очистки = макс. 5 м2/ час в зависимости от материала, подлежащего удалению. При намного меньшем давлении этот метод используется для удаления загрязнений с любой подложки.

Использование: удаление соли и других загрязнений, покрытий и ржавчины.

Влажная абразивная пескоструйная очистка под низким давлением

Давление= 6-8 кг/см2

Скорость очистки = 10-16 м2 /час в зависимости от материала, подлежащего устранению.

Использование: уменьшение абразивности, уменьшение количества пыли, удаление соли, устранение опасности возникновения искры. Результат сопоставим с сухой пескоструйной очисткой, но со вспышками ржавчины после высыхания.

Очистка паром: Давление=100-120 кг/см2

Использование: Удаление водорастворимых и эмульгированных загрязнений: подложка высыхает быстрее, чем при обработке подложки водой.

При определении точной степени удаления ржавчины и очистки стальной поверхности перед покраской использует Международный стандарт ISO 8501-01-1988 и ISO 8504-1992.

ISO 8501-01 употребляется по окалине. Это означает следующие уровни заражения ржавчиной:

А — стальная поверхность в большой степени покрытая окалиной , но в незначительной степени или совсем не затронута ржавчиной.

Б — стальная поверхность, которая начала ржаветь и с которой окалина начала осыпаться.

С — стальная поверхность, с которой окалина отвалилась и откуда она может быть удалена, но с лёгким видимым питтингом.

Д — стальная поверхность, с которой окалина отвалилась, но с лёгким питтингом, видимым невооружённым глазом.

Степени предварительной подготовки поверхности Стандарт ISO определяет семь степеней подготовки поверхности.

В спецификациях часто употребляются следующие стандарты:

ISO-St Обработка вручную и электроинструментами.

Подготовка поверхности вручную и с помощью электроинструментов: скобление, зачистка проволочными щётками , механическими щётками и шлифовка, — обозначается буквами "St".

Прежде, чем начать очистку вручную или электроинструментами, толстые слои ржавчины должны быть удалены способом обрубки. Видимые загрязнения от масла, жира и грязи тоже должны быть удалены.

После очистки вручную и электроинструментами, поверхность должна быть очищена от отслаивающейся краски и пыли.

ISO-St2 Тщательная очистка вручную и электроинструмента-ми

При поверхностном рассмотрении невооружённым взглядом, подложка должна выглядеть очищенной от видимых следов масла , жира и грязи и от плохо прилегающей окалины, ржавчины, краски и посторонних веществ.

ISO-St3 Очень тщательная очистка вручную и электроинструмента-ми

То же самое, что и для St2, но подложка должна быть очищена намного более тщательно, до появления металлического блеска.

ISO-Sa пескоструйная очистка

Подготовка поверхности способом пескоструйной обработки обозначается буквами "Sa".

Прежде, чем приступить к пескоструйной очистке, толстые слои ржавчины должны быть удалены методом обрубки. Видимые масляные, жировые загрязнения и грязь тоже должны быть устранены.

После пескоструйной обработки подложка должна быть очищена от пыли и мусора.

ISO-Sa1 лёгкая пескоструйная очистка

При проверке невооружённым взглядом поверхность должна выглядеть зачищенной от видимых масляных, жировых пятен и грязи и от окалины с плохим прилеганием, ржавчины, краски и других посторонних веществ.

ISO-Sa2 Тщательная пескоструйная очистка

При проверке невооружённым взглядом поверхность должна выглядеть зачищенной от видимых масляных, жировых пятен и грязи и от большей части окалины, ржавчины, краски и других посторонних веществ. Каждое остаточное загрязнение должно иметь плотное прилегание.

ISO-Sa2,5 Очень тщательная пескоструйная очистка

При проверке невооружённым взглядом поверхность должна выглядеть зачищенной от видимых масляных, жировых пятен и грязи и от большей части окалины, ржавчины, краски и других посторонних веществ. Все остаточные следы заражения должны проявляться только в форме едва заметных пятен и полос.

ISO-Sa3 Пескоструйная очистка до визуально чистой стали.

При проверке невооружённым взглядом поверхность должна выглядеть зачищенной от видимых масляных, жировых пятен и грязи и от большей части окалины, ржавчины, краски и других посторонних веществ. Поверхность должна иметь однородный металлический блеск.

Шероховатость поверхности после пескоструйной очистки:

Для определения шероховатости используются различные обозначения, такие как Rz, Rt Ra.

Rz — среднее возвышение по сравнению с уровнем равнины =профиль абразивного материала

Rt — максимальное возвышение по отношению к уровню равнины

Ra — среднее расстояние до воображаемой центральной линии, которая может быть проведена между вершинами и равнинами(ISO3274).

Абразивный профиль (Rz) — 4 до 6 раз C.L.A. (Ra)

Непосредственное измерение Т.С.С. грунтовок, применяемых по стали, подвергнувшейся пескоструйной очистке, до толщины 30 мкм весьма неточное. Грунтовка при толщине сухого слоя 30 мкм и более образует среднюю толщину, а не толщину на вершинах.

Когда в спецификациях упоминается абразивный профиль Rz , пескоструйная очистка по стандарту ISO — Sa2.5 должна быть достигнута с использованием минерального песка, если не упомянуто ничего другого.

Свыше Ra при 17 мкм (профиль абразивного материала R при Т.С.С. 100 мкм) рекомендуется использовать дополнительный слой грунтовки для того, чтобы укрыть шероховатость.

Если подвергается пескоструйной очистке сильно заржавленную сталь, часто достигается профиль свыше 100 мкм.

Ссылка на основную публикацию