Медь хорошо проводит электрический ток

Самые лучшие проводники электричества — металлы. Хорошей электропроводностью металлы опять-таки обя­заны свободным электронам.

Когда мы присоединяем лампочку, плитку или какой – нибудь другой электрический прибор к источнику тока, в проводах, в нити лампочки, в спирали плитки мгно­венно возникают большие изменения: электроны теряют прежнюю полную свободу движения и устремляются к положительному полюсу источника тока. Такой на­правленный поток электронов и есть электрический ток в металлах.

Поток электронов движется по металлу не беспрепят­ственно — он встречает на своём пути ионы. Движение от­дельных электронов тормозится. Электроны передают часть своей энергии ионам, благодаря чему скорость ко­лебательного движения ионов увеличивается. Это приво­дит к тому, что проводник нагревается.

Ионы разных металлов оказывают движению электро­нов неодинаковое сопротивление. Если сопротивление мало, металл нагревается током слабо, если же сопроти­вление велико, металл может раскалиться. Медные про­вода, подводящие ток к электрической плитке, почти не нагреваются, так как электрическое сопротивление меди ничтожно. А нихромовая спираль плитки раскаляется до­красна. Ещё сильнее нагревается вольфрамовая нить элек­трической лампочки.

Наиболее высокой электропроводностью отличаются серебро и медь, затем следуют золото, хром, алюминий, марганец, вольфрам и т. д. Плохо проводят ток железо, ртуть и титан. Если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия— 55, железа и ртути — 2, а титана — лишь 0,3.

Серебро — металл дорогой и в электротехнике исполь­зуется мало, но медь применяется для изготовления прово­дов, кабелей, шин и других электротехнических изделий в громадных количествах. Электропроводность алюминия в 1,7 раза меньше, чем у меди, и поэтому алюминий приме­няется в электротехнике реже, чем медь.

Серебро, медь, золото, хром, алюминий, . свинец, ртуть. Мы видели, что в таком же приблизительно по­рядке стоят металлы и в ряду с постепенно убывающей теплопроводностью (см. стр. 33).

Наилучшие проводники электрического тока, как пра­вило, являются и наилучшими проводниками тепла. Между теплопроводностью и электропроводностью ме­таллов существует определённая связь, и чем выше электропроводность металла, тем обычно выше и его теплопроводность.

Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Это объясняется следующим обра­зом. Атомы элементов, составляющих примеси, вклини­ваются в кристаллическую решётку металла и нарушают её правильность. В результате решётка становится более серьёзной преградой для электронного потока.

Если в меди присутствуют ничтожные количества при­месей — десятые и даже сотые доли процента — электро­проводность её уже сильно понижается. Поэтому в элек­тротехнике используют преимущественно очень чистую медь, содержащую только 0,05% примесей. И наоборот, в тех случаях, когда необходим материал с высоким со­противлением— для реостатов[49]), для различных нагре­вательных приборов, применяются сплавы — нихром, ни­келин, константан и другие.

Электропроводность металла зависит также и от харак­тера его обработки. После прокатки, волочения и обработ­ки резанием электропроводность металла понижается. Это связано с искажением кристаллической решётки при обработке, с образованием в ней дефектов, которые тор­мозят движение свободных электронов.

Очень интересна зависимость электропроводности ме­таллов от температуры. Мы уже знаем, что при нагре­вании размах и скорость колебаний ионов в кристалли­ческой решётке металла увеличиваются. В связи с этим должно возрастать и сопротивление ионов электронному потоку. И действительно, чем выше температура, тем выше сопротивление проводника току. При температурах плавления сопротивление большинства металлов увеличи­вается в полтора-два раза.

При охлаждении происходит-обратное явление: бес­порядочное колебательное движение ионов в узлах ре­шётки уменьшается, сопротивление потоку электронов по­нижается и электропроводность увеличивается.

Исследуя свойства металлов при глубоком (очень сильном) охлаждении, учёные обнаружили замечательное явление: вблизи абсолютного нуля, то-есть при темпера­турах около минус 273,16°, металлы полностью утрачи­вают электрическое сопротивление. Они становятся «иде­альными проводниками»: в замкнутом металлическом кольце ток не ослабевает долгое время, хотя кольцо уже не соединено с источником тока! Это явление названо сверхпроводимостью. Оно наблюдается у алю­миния, цинка, олова, свинца и некоторых других метал­лов. Эти металлы становятся сверхпроводниками при тем­пературах ниже минус 263°.

Как объяснить сверхпроводимость? Почему одни ме­таллы достигают состояния идеальной проводимости, а другие нет? На эти вопросы пока ещё нет ответа. Явле­ние сверхпроводимости имеет громадное значение для тео­рии строения металлов, и в настоящее время его изучают советские учёные. Работы академика Л. Д. Ландау и члена-корреспондента Академии наук СССР А. И. Шаль – никова в этой области удостоены Сталинских премий.

Читайте также:  Резиновый лист 20 мм
См. также: Портал:Физика

Электропроводность (электри́ческая проводи́мость, проводимость) — способность тела (среды) проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению [1] .

В Международной системе единиц (СИ) единицей измерения электрической проводимости является сименс (русское обозначение: См; международное: S), определяемый как 1 См = 1 Ом −1 , то есть, как электрическая проводимость участка электрической цепи сопротивлением 1 Ом [2] .

Также термин электропроводность (электропроводность среды, вещества) применяется для обозначения удельной электропроводности (см. ниже).

Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток. Ток проводимости практически не зависит от частоты приложенного поля (до определенных пределов, в области низких частот).

Электропроводность среды (вещества) связана со способностью заряженных частиц (электронов, ионов), содержащихся в этой среде, достаточно свободно перемещаться в ней. Величина электропроводности и ее механизм зависят от природы (строения) данного вещества, его химического состава, агрегатного состояния, а также от физических условий, прежде всего таких, как температура.

Содержание

Удельная электропроводность [ править | править код ]

Удельной электропроводностью (удельной проводимостью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

J → = σ E → , <displaystyle <vec >=sigma ,<vec >,>

σ <displaystyle sigma >— удельная проводимость, J → <displaystyle <vec >>— вектор плотности тока, E → <displaystyle <vec >>— вектор напряжённости электрического поля.

  • Электрическая проводимость G однородного проводника длиной L с постоянным поперечным сечением площадью S может быть выражена через удельную проводимость вещества, из которого сделан проводник:

G = σ S L . <displaystyle G=sigma <frac >.>

  • В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом −1 ·м −1 . В СГСЭ единицей удельной электропроводности является обратная секунда (с −1 ).

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

J i = ∑ k = 1 3 σ i k E k , <displaystyle J_=sum limits _^<3>sigma _,E_,>

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) т. н. собственный базис — ортогональную систему декартовых координат, в которых матрица σ i k <displaystyle sigma _> становится диагональной, то есть приобретает вид, при котором из девяти компонент σ i k <displaystyle sigma _> отличными от нуля являются лишь три: σ 11 <displaystyle sigma _<11>> , σ 22 <displaystyle sigma _<22>> и σ 33 <displaystyle sigma _<33>> . В этом случае, обозначив σ i i <displaystyle sigma _> как σ i <displaystyle sigma _> , вместо предыдущей формулы получаем более простую

J i = σ i E i . <displaystyle J_=sigma _E_.>

Величины σ i <displaystyle sigma _> называют главными значениями тензора удельной проводимости. В общем случае приведённое соотношение выполняется только в одной системе координат [3] .

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае [4] приближённо, причём приближение это хорошо только для сравнительно малых величин E . Впрочем, и при таких величинах E , когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность.

Также в случае нелинейной зависимости J от E (то есть в общем случае) может явно вводиться дифференциальная удельная электропроводность, зависящая от E :

σ = d J / d E <displaystyle sigma =dJ/dE> (для анизотропных сред: σ i k = d J i / d E k <displaystyle sigma _=dJ_/dE_> ).

Электропроводность и носители тока [ править | править код ]

Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе сколь угодно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь (вообще говоря, иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга [5] .

Читайте также:  Технические самоделки своими руками в домашних условиях

Поскольку плотность тока определяется формулой

j → = q n v → c p . <displaystyle <vec >=qn<vec >_> для одного типа носителей, где q — заряд одного носителя, n — концентрация носителей, vср. — средняя скорость их движения,

j → = ∑ i q i n i v → i c p . <displaystyle <vec >=sum _q_n_<vec >_> для более чем одного вида носителей, нумеруемых индексом i, принимающим значение от 1 до количества типов носителей, у каждого из которых может быть свой заряд (отличающийся величиной и знаком), своя концентрация, своя средняя скорость движения (суммирование в этой формуле подразумевается по всем имеющимся типам носителей),

то, учитывая, что (установившаяся) средняя скорость каждого типа частиц при движении в конкретном веществе (среде) пропорциональна приложенному электрическому полю (в том случае, когда движение вызвано именно этим полем, что мы здесь и рассматриваем):

v → c p . = μ E → , <displaystyle <vec >_=mu <vec >,>

где μ — коэффициент пропорциональности, называемый подвижностью и зависящий от вида носителя тока в данной конкретной среде [6] ,

видим, что для электропроводности справедливо:

σ = q n μ <displaystyle sigma =qnmu >

σ = ∑ i q i n i μ i <displaystyle sigma =sum _q_n_mu _> для более чем одного вида носителей.

Механизмы электропроводности и электропроводность различных классов веществ [ править | править код ]

Электропроводность металлов [ править | править код ]

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах [7] .

Связь с коэффициентом теплопроводности [ править | править код ]

Закон Видемана — Франца, выполняющийся для металлов при высоких температурах, устанавливает однозначную связь удельной электрической проводимости σ <displaystyle sigma > с коэффициентом теплопроводности K :

K σ = π 2 3 ( k e ) 2 T , <displaystyle <frac <sigma >>=<frac <pi ^<2>><3>><left(<frac >
ight)^<2>>T,>

где k — постоянная Больцмана, e — элементарный заряд. Эта связь основана на том факте, что как электропроводность, так и теплопроводность в металлах обусловлены движением свободных электронов проводимости.

Электропроводность растворов [ править | править код ]

Скорость движения ионов зависит от напряженности электрического поля, температуры, вязкости раствора, радиуса и заряда иона и межионного взаимодействия.

У растворов сильных электролитов наблюдается характер концентрационной зависимости электрической проводимости объясняется действием двух взаимнопротивоположных эффектов. С одной стороны, с ростом разбавления уменьшается число ионов в единице объёма раствора. С другой стороны, возрастает их скорость за счет ослабления торможения ионами противоположного знака.

Для растворов слабых электролитов наблюдается характер концентрационной зависимости электрической проводимости можно объяснить тем, что рост разбавления ведёт, с одной стороны, к уменьшению концентрации молекул электролита. В то же время возрастает число ионов за счёт роста степени ионизации.

В отличие от металлов (проводники 1-го рода) электрическая проводимость растворов как слабых, так и сильных электролитов (проводники 2-го рода) при повышении температуры возрастает. Этот факт можно объяснить увеличением подвижности в результате понижения вязкости раствора и ослаблением межионного взаимодействия

Электрофоретический эффект — возникновение торможения носителей вследствие того, что ионы противоположного знака под действием электрического поля двигаются в направлении, обратном направлению движения рассматриваемого иона

Релаксационый эффект — торможение носителей в связи с тем, что ионы при движении расположены асимметрично по отношению к их ионным атмосферам. Накопление зарядов противоположного знака в пространстве за ионом приводит к торможению его движения.

При больших напряжениях электрического поля скорость движения ионов настолько велика, что ионная атмосфера не успевает образоваться. В результате электрофоретическое и релаксационное торможение не проявляется.

Удельная электропроводность некоторых веществ (таблица) [ править | править код ]

Удельная проводимость приведена при температуре +20 °C [8] :

Читайте также:  Клещи для обжима интернет кабеля

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.
Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Ссылка на основную публикацию
Adblock
detector