В повседневной практике при эксплуатации средств измерений принято нормирование метрологических характеристик на основе классов точности средств измерений.
Под классом точностипонимается обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основных и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.
Класс точности характеризует, в каких пределах находится погрешность данного типа средств измерений, но не является непосредственным показателем точности измерений, выполненных с помощью этих средств. Классы точности устанавливаются стандартами, содержащими технические требования к средствам измерений, подразделяемым по точности.
Средства измерений должны удовлетворять требованиям, предъявляемым к метрологическим характеристикам, установленным для присвоенного им класса точности, как при выпуске их из производства, так и в процессе эксплуатации.
Метрологические характеристики, определяемые классами точности, нормируют следующим образом.Пределы допускаемых основной и дополнительной погрешностей выражают:
– в форме приведенных, относительных или абсолютных погрешностей;
– в зависимости от характера измерения погрешностей в пределах диапазона измерений;
– в зависимости от условий применения и назначения средств измерений конкретного вида.
Пределы всех основных и дополнительных допускаемых погрешностей выражаются не более чем двумя значащими цифрами, при этом погрешность округления при вычислении пределов не должна превышать 5% .
В зависимости от формы выражения погрешности классы точности могут выражаться заглавными буквами латинского алфавита (например, М,С) или римскими цифрами (I, II, III и т.д.) с добавлением условных знаков, смысл которых раскрывается в нормативно-технической документации. При этом меньшие пределы погрешности должны соответствовать буквам, находящимся ближе к началу алфавита, или меньшим цифрам. Если же класс точности обозначается арабскими цифрами с добавлением какого-либо условного знака, то эти цифры непосредственно устанавливают оценку снизу точности показаний средств измерений.
Примеры обозначения классов точности в документации и на средстве измерений приведены в табл. 3.3.1.
Примеры обозначения классов точности
Форма выражения погрешности
Пределы допускаемой основной погрешности, %
Обозначение класса точности
на средстве измерений
Приведенная погрешность γ
класс точности 1,5 класс точности 0,5
Относительная погрешность δ
Абсолютная погрешность Δ
Класс точности М Класс точности С
3.4. Расчет погрешности измерительной системы
Измерительная система предназначена для восприятия, переработки и хранения измерительной информации в общем случае разнородных физических величин по различным измерительным каналам (ИК). Поэтому расчет погрешности измерительной системы сводится к оценке погрешностей ее отдельных ИК.
Результирующая относительная погрешность ИК составит
,
где х — текущее значение измеряемой величины; — предел данного диапазона измерения канала, при котором относительная погрешность минимальна;
— относительные погрешности, вычисленные соответственно в начале и конце диапазона.
Поскольку ИК есть цепь различных воспринимающих, преобразовательных и регистрирующих звеньев, то для определения , (х) необходимо, прежде всего, оценить СКО погрешностей этих m звеньев
. Тогда результирующая СКО погрешности ИК будет
,
где — дополнительные погрешности отn влияющих факторов;
;
— границы допускаемой основной погрешности;
— квантильный коэффициент, определяемый законом распределения и доверительной вероятностью нахождения погрешности в заданном интервале.
Пример 3.2. Определить погрешность канала измерения мощности, структурная схема которого приведена на рис. 3.10. Здесь ТТ и ТН — соответственно трансформаторы тока и напряжения; — преобразователи соответственно мощности и тока; К — коммутатор; АЦП — аналого-цифровой преобразователь. Исходные данные: относительная погрешностьТТ, приведенная к началу диапазона измерения, составляет
, а к концу —
; относительная погрешность ТН
; СКО погрешность преобразования мощности состоит из пяти составляющих: основной погрешности (1%); погрешности от пульсации (0,2%); дополнительной погрешности от измененияcos φ (0,15%); погрешности от колебания напряжения питания (0,1%) и от колебаний температуры окружающей среды (0,6%); cos φ= 0,85;
и от изменения температуры окружающей среды; погрешность коммутатора на 128 каналов состоит из трех составляющих: погрешности падения напряжения открытого ключа (0,4%), от утечки тока в каждом из 127 закрытых ключом каналов (0,13%) и пульсации несущей частоты (0,06%);
,
Рис. 3.10 Канал для измерения мощности
Решение. 1. Учитывая, что закон распределения погрешности неизвестен, примем его равномерным (k=1,73), и по формуле (3.11) находим и
.
Для трансформатора напряжения . Принимая предыдущие условия,
.
Для преобразователя мощности .
Тогда .
Здесь не учтена погрешность от колебаний окружающей температуры, так как эта погрешность жестко коррелирована (ρ=1) с погрешностью преобразователядля которого она составляет
. В этом случае СКО погрешностей складываются алгебраически
и учитываются уже в суммарной погрешности этих преобразователей.
Поскольку не имеет других погрешностей, тообщая погрешность преобразователей составит
4. Для коммутатора, приняв условия п. 1,
.
При этом .
5. Относительные погрешности АЦП заданы. Полагая закон их распределения равномерным, получим
6. Окончательно СКО ИК для конца диапазона составит
,
7. Приняв квантильный коэффициент k=1,95 для доверительной вероятности Р=0,95, окончательно для начала и конца диапазона измерений ИК получим
Тогда с учетом округлений по ряду (3.4)
Это расчетное значение погрешности следует умножить на коэффициент запаса, учитывающий старение элементов ИК. Обычно для рассмотренных звеньев ИК скорость старения не превышает 0,1% в год.
Измерение – совокупность операций по применению технического средства, хранящего единицу величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей в явном или неявном виде и получение значения этой величины. Вообще метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Усовершенствование точности измерений стимулировало развитие наук, предоставляя более достоверные и чувствительные средства исследований. От точности средств измерения зависит эффективность выполнения различных функций: погрешности счетчиков энергии приводят к неопределенности в учете электроэнергии; погрешности весов ведут к обману покупателей или к большим объемам неучтенного товара.
Повышение точности измерений позволяет определить недостатки технологических процессов и устранить эти недостатки, что приводит к повышению качества продукции, экономии энергетических и тепловых ресурсов, сырья, материалов.
Измерения могут быть классифицированы по характеристике точности на:
Равноточные – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях;
Неравноточные – ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях.
К разным видам средств измерения предъявляют специфические требования: например, лабораторные средства должны обладать повышенной точностью и чувствительностью. Высокоточными СИ являются, например, эталоны. Эталон единицы величины – средство измерений, предназначенное для воспроизведения и хранения единицы величины, кратных или дольных ее значений с целью передачи ее размера другим средствам измерений данной величины. Эталоны являются высокоточными средствами измерений и поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается «сверху вниз» от более точных средств измерений к менее точным «по цепочке»: первичный эталон ( вторичный эталон ( рабочий эталон 0-го разряда ( рабочий эталон 1-го разряда … ( рабочее средство измерений. Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками. Все метрологические свойства средств измерений можно разделить на две группы:
Свойства, определяющие область применения СИ
Свойства, определяющие качество измерения. К таким свойствам относятся точность, сходимость и воспроизводимость.
Наиболее широко в метрологической практике используется свойство точности измерений, которое определяется погрешностью. Погрешность измерения – разность между результатом измерения и истинным значением измеряемой величины.
Точность измерений СИ – качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины.
Точность определяется показателями абсолютной и относительной погрешности.
Абсолютная погрешность определяется по формуле: Хп= Хп – Х0, где: Хп – погрешность поверяемого СИ; Хп – значение той же самой величины, найденное с помощью поверяемого СИ; Х0 – значение СИ, принятое за базу для сравнения, т.е. действительное значение.
Однако в большей степени точность средств измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ.
В стандартах нормируют характеристики точности, связанные и с другими погрешностями:
Систематическая погрешность – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины. Такая погрешность может проявиться, если смещен центр тяжести СИ или СИ установлен не на горизонтальной поверхности.
Случайная погрешность – составляющая погрешности результата измерения, изменяющаяся случайным образом в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. Такие погрешности не закономерны, но неизбежны и присутствуют в результатах измерения.
Погрешность измерений не должна превышать установленных пределов, которые указаны в технической документации к прибору или в стандартах на методы контроля (испытаний, измерений, анализа).
Чтобы исключить значительные погрешности, проводят регулярную поверку средств измерений, которая включает в себя совокупность операций, выполняемых органами государственной метрологической службы или другими уполномоченными органами с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.
В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.
Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.
Обозначение классов точности осуществляются следующим образом:
Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.
Для СИ, пределы допускаемой основной погрешности которых принято выражать в форме относительной погрешности, обозначаются числами, которые равны этим пределам, выраженным в процентах.
Обозначения класса точности наносят на циферблаты, щитки и корпуса СИ, приводят в нормативных документах. Средствам измерений с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или для каждой измеряемой величины.
Классы точности присваиваются при разработке СИ по результатам приемочных испытаний. В связи с тем, что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки.
При подготовке и проведении высокоточных измерений в метрологической практике учитывают влияние объекта измерения, субъекта, метода измерения, средства измерения, условий измерения. Так, объект должен быть всесторонне изучен; элемент субъективизма в результатах измерения должен быть сведен к минимуму; учитывают факторы и условия, которые могут искажать результаты измерений. Поэтому необходимо соблюдать методику выполнения измерений, чтобы получить результаты с минимальной погрешностью. Такие методики изложены в законе РФ «Об обеспечении единства измерений. А в 1997 году начал действовать ГОСТ 8.563-96 «ГСИ. Методики выполнения измерений».
В моей повседневной работе мне не часто приходится сталкиваться с различными средствами измерений. Однако приведу некоторые сравнительные примеры, в которых о точности можно судить по порогу чувствительности. Во многих современных продуктовых магазинах сейчас установлены электронные весы, являющиеся рабочим средством измерений. Диапазон таких весов – от 0 до 10 кг, а цена деления (если так можно выразиться для электронной версии весов) или порог чувствительности составляет 1 грамм. Таким образом, точность взвешивания достаточно высока и погрешность может составлять 0.001 кг. И не только точность измерения, но и точность расчетов с покупателями – ведь от веса продукта зависит его цена. К сожалению, класс точности не был указан на корпусе, а сотрудники при таком вопросе пришли в замешательство.
В продуктовых магазинах часто можно встретить и обыкновенные весы, на которых взвешивают с помощью гирек, которые тоже являются рабочим средством измерений. Я первый раз обратила внимание на такие весы и увидела(!), что в нашем магазине они стоят на неровной поверхности. Дело в том, что в корпус весов вмонтирован полый шарик, наполненный водой. Если весы установлены ровно, то верхняя кромка воды (под действием физических законов) располагается параллельно поверхности. В моем случае это явно было не соблюдено. Диапазон весов – от 0 до 5 кг, а порог чувствительности – 10 грамм. Из этого следует, что такие весы менее точные, нежели описанные выше – электронные, так как погрешность может составлять 0.01 кг.
У нас на работе на складе установлены весы для взвешивания овощей. Эти весы имеют диапазон от 0 до 200 кг, так что любой взрослый человек может легко на них взвеситься. Порог чувствительности составляет 200 грамм и это указано на циферблате. Помимо этого, на циферблате указано, что весы изготовлены фирмой Suprema S.p.a., диапазон 0-200 кг, e-d=200 gr, серийный номер № 122001/21 и индивидуальный номер №91097. Также там указан и класс точности – III – для подобных средств измерений, относящихся к профессиональному оборудованию. В паспорте этих весов указано, что классы точности для данной продукции установлены от I до III, вероятно, согласно нормативным документам, действующим в стране-производителе.
И, наконец, безмен, имеющий самый низкий класс точности и являющийся рабочим средством измерения. С помощью этого средства можно произвести скорее примерное взвешивание, т.к. цена деления составляет 0.5 кг и погрешность при измерении будет очень значительна. Диапазон безмена – от 0 до 7 кг. Но даже при таком неточном средстве измерения, результат зависит от некоторых факторов. В данном случае результат измерений напрямую зависел от человека, производящего измерения. При повторном взвешивании погрешность была очень высока и зависела от дрожания рук и от того, насколько точно вертикально было положение безмена. 1
Важнейшими свойствами средств измерений являются те, от которых зависит качество (точность) получаемой с их помощью измерительной информации. Эти свойства определяются метрологическими характеристиками средств измерений.
Метрологическими характеристиками средств измерений называют характеристики, оказывающие влияние на результаты измерений и их точность.
Для каждого вида средств измерений нормируется определенный комплекс метрологических характеристик, указываемый в нормативной документации на средство измерений. В этот комплекс должны включаться такие характеристики, которые позволяют определить погрешность данного средства измерений в известных рабочих условиях его применения.
В качестве примера назовем некоторые метрологические характеристики:
– функция преобразования – это функциональная зависимость между информативными параметрами входного и выходного сигналов средств измерений;
– чувствительность средства измерений – это отношение приращения выходного сигнала (∆у) средства измерений к вызвавшему это приращение изменению входного сигнала (∆ х);
– диапазон измерений – это область значений измеряемой величины, для которой нормированы допускаемые погрешности средств измерений;
– диапазон показаний – это область значений шкалы, ограниченная начальными и конечными значениями шкалы;
– цена деления шкалы – разность значений величины, соответствующих двум соседним отметкам шкалы.
Важной метрологической характеристикой средства измерений является погрешность, которую оно вносит в результат измерения.
Важно отметить, что средства измерений можно использовать по назначению, если известны их метрологические характеристики. Сведения о номинальных значениях тех или иных характеристик и допускаемые отклонения от них приводят обычно в нормативно-технической документации на средства измерений, а наиболее важные из них указывают на самих средствах.
Установление номинальных значений и границ допускаемых отклонений реальных метрологических характеристик средств измерений от их номинальных значений называют нормированием метрологических характеристик.
Классом точности средств измерений называется обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами средств измерений, влияющими на точность.
За предел допускаемой погрешности средства измерений принимается наибольшая (без учета знака) погрешность средства измерений, при которой оно (средство измерений) может быть признано годным и допущено к применению.
В соответствии с определением класса точности нормированию подлежат основные и дополнительные погрешности; если же изменение погрешности во всей рабочей области значений влияющих величин составляет менее половины, то дополнительная погрешность может не нормироваться. Таким образом, непосредственно класс точности определяет основная допускаемая погрешность.
Класс точности средства измерений дает количественную оценку границ погрешности СИ и не является непосредственным показателем точности измерений, выполняемых с помощью этих средств.
Установлены единые условные обозначения классов точности:
1,5; 0,5; 0,02/0,1; 2,5; В (V). Рассмотрим смысл обозначений классов точности.
1. Классы точности измерительных приборов, обозначаемые арабскими числами 1,5; 2,5, равны пределу допускаемой приведенной погрешности γ в% от нормирующего значения Хн, выраженного большим из пределов измерений.
Абсолютная погрешность измерительного прибора с таким условным обозначением класса точности не будет превышать значение, определенное из формулы:
Например, для вольтметра класса точности 2,0 и шкалой 0. 200 В (Хн = 200 В) абсолютная погрешность при измерениях не будет превышать:
∆ ≤ ± 2,0 ∙ 200 ÷ 100 = 4,0 В
2. Классы точности измерительных приборов, обозначаемые арабскими числами «в уголке» 0,5; 1,5 численно соответствуют пределу приведенной погрешности γ в % от нормирующего значения Хн, равного модулю разности верхнего (Хв) и нижнего пределов измерения (X нижн.)
Например, для вольтметра класса 1,0 и шкалой 10. 100 В (Хн = 90В) абсолютная погрешность при измерениях не будет превышать
∆ ≤ ± 1,0 ∙ 90 ÷ 100 = 0,9 В
Особенностью измерения приборами с классом точности по приведенной погрешности является то, что их точность измерения в начале шкалы будет существенно меньшей и максимальной (для данного прибора) вблизи конечной отметки шкалы.
Поэтому при пользовании такими приборами для уменьшения погрешности измерения отсчет результатов измерения необходимо производить в последней третьей части шкалы.
3. Классы точности измерительных приборов, обозначаемые арабскими числами «в кружке» (0,5); (2,5) численно соответствуют пределу относительной погрешности в процентах.
Абсолютная погрешность такого измерительного прибора не будет превышать значения, определенного по формуле:
где Х – измеренное прибором значение величины.
4. Классы точности измерительных приборов, обозначаемые числами
через косую черту 0,02/0,1 численно совпадают с коэффициентами двухчлен-
ной формулы для определения относительной погрешности δ.
5. Для средств измерений, пределы допускаемой основной погрешности
которых принято выражать в форме абсолютных погрешностей, класс точности
обозначается прописными буквами латинского алфавита (В) или римскими
цифрами (V). Классам точности, которым соответствуют меньшие пределы до-
пускаемых погрешностей, должны соответствовать буквы, находящиеся ближе
к началу алфавита, или цифры, означающие меньшие числа.
Дата добавления: 2016-01-30 ; просмотров: 2477 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ