Как регулировать скорость вращения электродвигателя

С проблемой регулировки оборотов электродвигателя приходится сталкиваться довольно часто: это работа с различными электроинструментами, приводами швейных машинок, прочими электроприборами на производстве и в быту. Регулировать обороты с помощью понижения питающего напряжения зачастую не имеет смысла: резко уменьшаются обороты двигателя, он теряет мощность и останавливается. Поэтому оптимальным вариантом для регулирования числа оборотов двигателя является изменение напряжения с применением обратной связи по току нагрузки.

В большинстве случаев в электроинструментах и прочем оборудовании применяются универсальные коллекторные электродвигатели с последовательным возбуждением. Они одинаково хорошо работают как от переменного, так и от постоянного тока. Особенность работы коллекторного электродвигателя заключается в том, что во время коммутации обмоток якоря при размыкании на ламелях коллектора возникают импульсы противо-ЭДС самоиндукции. По амплитуде они равны питающим импульсам, но по фазе – противоположны им. Угол смещения противо-ЭДС зависит как от внешних характеристик двигателя, так и от нагрузки и прочих факторов.

Вредное влияние противо-ЭДС приводит к искрению на коллекторе, а также потере мощности двигателя и дополнительному нагреву его обмоток. Некоторая часть противо-ЭДС гасится с помощью конденсаторов, шунтирующих щеточный узел.

Давайте рассмотрим процессы, которые протекают в режиме регулирования с обратной связью, на примере универсальной схемы (см. рис. 1). Опорное напряжение, которое определяет скорость вращения электродвигателя, формируется резистивно-емкостной цепью Р12-КЗ-С2. При увеличении нагрузки скорость вращения падает, при этом снижается и его крутящий момент. При этом уменьшается и противо-ЭДС, возникающая в двигателе и приложенная между катодом и управляющим электродом тиристора VS1. Это приводит к изменению на управляющем электроде тиристора напряжения, которое увеличивается пропорционально тому, как уменьшается противо-ЭДС.

Дополнительное напряжение на управляющем электроде тиристора приводит к его включению при меньшем фазовом угле (угле отсечки) и подаче на двигатель большего тока, что таким образом компенсирует снижение скорости вращения при увеличении нагрузки. Это приводит к наличию на управляющем электроде тиристора баланса импульсного напряжения, которое составлено из напряжения питания и напряжения самоиндукции двигателя.

При необходимости возможно перейти с помощью переключателя SA1 перейти на питание с помощью полного напряжения, без использования регулировки. Подбору тиристора по минимальному току включения необходимо уделить особое внимание, так это позволит обеспечить лучшую стабилизацию скорости вращения двигателя.

Вторая схема включения (см. рис.2) рассчитана на работу с более мощными двигателями, которые используются в шлифовальных машинах, деревообрабатывающих станках и дрелях. Принцип регулирования в ней остается прежним. Тиристор в этой схеме необходимо установить на радиатор с площадью не менее 25 кв.см.

При необходимости получения очень малых скоростей вращения или при применении для маломощных двигателей можно применять схему с использованием ИМС (см. рис. 3). Она питается от постоянного тока напряжением 12В. В случае питания от более высокого напряжения необходимо применить параметрический стабилизатор с напряжением стабилизации не выше 15В.

Регулировка скорости осуществляется с помощью изменения среднего значения напряжения импульсов, которые подаются на двигатель. С помощью таких импульсов возможно эффективно регулировать очень малые скорости вращения, так как они как бы “подталкивают” ротор двигателя. При повышении скорости вращения двигатель работает обычным образом.

Довольно несложная схема (см. рис. 4) предназначена для использования на линии игрушечной железной дороги. Она позволит избежать аварийных ситуаций и предоставит новые возможности при управлении составами. Лампа накаливания, находящаяся во внешней цепи, предохраняет и служит для сигнализирования о коротком замыкании на линии, ограничивая при этом выходной ток.

Читайте также:  Резьба дюймовая размеры таблица с шагами

При необходимости регулирования оборотов двигателей с наличием на валу большого крутящего момента (например, в электролебедке) может пригодиться двухполупериодная мостовая схема, приведенная на рис. 5. Существенным отличием ее от предыдущих схем, где работает только одна полуволна питающего напряжения, является обеспечение полной мощности на двигателе.

Гасящий резистор R2 и диоды VD2 и VD6 используются для подачи питания на схему запуска. Задержка открывания тиристоров по фазе обеспечивается с помощью заряда конденсатора C1 через резисторы R3 и R4 от источника напряжения, уровень которого зависит от стабилитрона VD8. После заряда конденсатора C1 до порога срабатывания однопереходного транзистора VT1, последний открывается и запускает тот тиристор, на аноде которого имеется положительное напряжение. После разряда конденсатора однопереходный транзистор выключается. Номинал резистора R5 определяется желаемой глубиной обратной связи и типом двигателя. Для расчета его величины используется формула:

где Iм — эффективное значение максимального тока нагрузки для данного типа двигателя.

Предложенные схемы легко повторяются, но требуют произвести подбор некоторых элементов в зависимости от характеристик применяемого электродвигателя (к сожалению, практически невозможно найти электродвигатели, идентичные по всем параметрам, даже в пределах одной серии).

Практика показывает, что во многих случаях, когда требуется получить глубокое и плавное регулирование скорости, применяют электроприводы постоянного тока. Использование таких двигателей даёт выгодное соотношение общей стоимости электропривода и его функциональных характеристик, поскольку именно двигатели постоянного тока позволяют более простыми средствами осуществить качественное регулирование скорости. Однако при использовании двигателей постоянного тока необходимо преобразовывать переменный ток в постоянный. Это преобразование всегда связано с потерями энергии и увеличением капитальных затрат на преобразовательную установку. Поэтому в ряде регулируемых установок применяют двигатели переменного тока, более простые, дешёвые, надёжные и экономичные в эксплуатации.

Чаще всего применяются асинхронные двигатели с короткозамкнутым ротором, реже асинхронные двигатели с контактными кольцами, иногда коллекторные двигатели переменного тока.

Синхронные двигатели широко используются в промышленных установках средней и большой мощности, не требующих регулирования скорости вращения. Хотя принципиально имеется возможность регулирования скорости вращения синхронных электродвигателей изменением частоты, однако, как правило, синхронные двигатели должны быть отнесены к числу нерегулируемых.

Наибольшее применение получили следующие способы регулирования скорости вращения асинхронного двигателя:

а) введением сопротивления в цепь ротора;

б) изменением числа пар полюсов;

в) изменением частоты питающего напряжения;

г) каскадным включением асинхронного двигателя с другими машинами или вентильными преобразователями.

Для целей регулирования скорости, кроме упомянутых, могут быть использованы некоторые специальные способы включения электрических двигателей: импульсное регулирование, регулирование с помощью дросселей насыщения и другие.

5.1. Регулирование скорости вращения асинхронного двигателя ведением сопротивления в цепь ротора.

Введение сопротивления в цепь ротора (реостатное регулирование) позволяет, как и у двигателей постоянного тока, регулировать скорость вращения двигателя. Плавность регулирования зависит от числа ступеней включаемого сопротивления. Регулирование осуществляется вниз от основной скорости, причём лучшее использование двигателя достигается при регулировании с постоянным моментом. Диапазон регулирования непостоянен и зависит от нагрузки. Жёсткость характеристик значительно уменьшается по мере снижения скорости, что ограничивает диапазон регулирования до (2÷3) : 1. Недостатком этого способа регулирования являются также значительные потери энергии.

Читайте также:  Самоделки хорошие по деревообработке

Более благоприятным в отношении потерь энергии является реостатное регулирование скорости при вентиляторном моменте нагрузки, когда подводимая мощность значительно уменьшается по мере снижения скорости. Поэтому такой способ регулирования находит более широкое применение в приводах с вентиляторным моментом нагрузки, а также в механизмах с повторно-кратковременным режимом работы, как, например, в крановых устройствах.

5.2. Регулирование скорости вращения асинхронного двигателя изменением числа полюсов.

Синхронная угловая скорость асинхронного электродвигателя зависит от частоты f1 питающего напряжения и от числа пар полюсов статора p:

или синхронная скорость вращения

, об/мин.

Поэтому числом пар полюсов можно регулировать скорость вращения двигателя.

У двигателей с переключением числа полюсов обмотка каждой фазы состоит обычно из двух одинаковых частей, в одной из которых изменяется направление тока путём переключения этих частей с последовательного на параллельное соединение. Такое переключение (рис. 7.1) приводит к уменьшению числа полюсов вдвое и, следовательно, к увеличению вдвое синхронной скорости машины.

Рисунок.5.1. Схема переключения обмоток статора с последовательного на параллельное соединение.

Практически присоединение обмоток производится переключением обмотки статора по схеме, приведённой на рисунке 7.2, где осуществлён переход от одиночной звезды к двойной, или по схеме, где произведено переключение с треугольника на двойную звезду.

Кроме двухскоростных двигателей, применяются трёхскоростные двигатели, имеющие дополнительно ещё одну не переключаемую обмотку, а также четырёхскоростные двигатели, в статоре которых обычно закладывается две независимые обмотки на разные числа полюсов, каждая из которых переключается по одной из указанных выше схем.

Двигатели с переключением полюсов выполняют с короткозамкнутым ротором.

Регулирование скорости вращения переключением полюсов является не плавным, а ступенчатым. Вместе с тем рассматриваемый способ регулирования является весьма экономичным и отличается механическими характеристиками, обладающие большой жёсткостью.

Благодаря своим преимуществам двигатели с переключением полюсов находят широкое применение там, где не требуется плавного регулирования скорости, например в некоторых металлорежущих станках в целях уменьшения количества механических передач. Они применяются также для вентиляторов, насосов, элеваторов в цементной, нефтяной и других отраслях промышленности.

Рисунок 5.2.Схемы переключения обмоток статора на двойную звезду.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9756 — | 7376 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Читайте также:  Сколько в цинке патронов 9 мм

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

Ссылка на основную публикацию