Электронный регулятор напряжения схема

Электронные регуляторы напряжения автомобильных генераторов постоянного и переменного тока в последнее время находят все большее практическое применение. Это объясняется в основном тремя причинами: тем, что электронные регуляторы, во-первых, обладают высокой надежностью работы, во-вторых, обеспечивают возможность быстрой и удобной регулировки напряжения генератора и, в-третьих, не требуют каких-либо профилактических работ, связанных с эксплуатацией регулятора.

Автором статьи были исследованы различные варианты схем электронных регуляторов напряжения. На основе проведенной работы и опыта практической эксплуатации были выбраны два варианта электронных регуляторов напряжения для генераторов постоянного тока Г108М автомобиля «Москвич-408». Регуляторы могут быть использованы и с любыми другими генераторами постоянного тока, а также взяты за основу для регуляторов генераторов переменного тока (в этом случае ввиду отсутствия реле обратного тока схема регулятора упрощается). Электронный регулятор напряжения, также как и обычный, электромеханический, состоит из регулятора напряжения, реле обратного тока и реле ограничения максимального тока.

Структурная схема регулятора напряжения показана на рис. 1.

Этот узел является важнейшим и наиболее сложным узлом устройства. Он включает в себя измерительный элемент и усилительно-исполнительный элемент. Регулятор напряжения работает следующим образом. Напряжение, вырабатываемое генератором, поступает на измерительный элемент, где оно сравнивается с опорным напряжением или напряжением срабатывания измерительного элемента). Разность между напряжением генератора и опорным напряжением в виде управляющего сигнала поступает на усилительно-исполнительный элемент, который регулирует ток обмотки возбуждения генератора, поддерживая его выходное напряжение на заданном уровне.

Из большого числа известных измерительных элементов для регулятора напряжения выбраны два наиболее простых, но обладающих достаточно высокими значениями параметров. Измерительный элемент, схема которого показана на рис. 2, а, выполнен по мостовой схеме.

Рис. 2. Схемы измерительных элементов

Он работает следующим образом. При повышении напряжения генератора соответственно увеличивается напряжение на переменном резисторе R2 до напряжения стабилизации стабилитрона Д1. При дальнейшем увеличении входного напряжения напряжение на этом резисторе не изменяется. В зависимости от положения движка резистора R2 к базе транзистора Т1 прикладывается напряжение от 5,5 В до напряжения стабилизации стабилитрона, что вызывает появление почти такого же (несколько меньшего) напряжения на резисторе R5. При дальнейшем увеличении входного напряжения входит в режим стабилизации стабилитрон Д2. Это происходит при достижении входным напряжением значения, равного сумме напряжений на резисторе R5 и напряжения стабилизации стабилитрона Д2, и вызывает увеличение тока через резистор R5, увеличение напряжения на нем и закрывание транзистора Т1 (напряжение на его эмиттере становится больше напряжения на его базе). Если подключить к выходу такого измерительного элемента усилитель, нагруженный цепью обмотки возбуждения генератора, его напряжение будет поддерживаться на заданном уровне.

Измерительный элемент, выполненный по схеме рис. 2, б, работает несколько иначе. Стабилитрон Д1 включен в цепь базы транзистора Т1, который закрыт до тех пор, пока входное напряжение (с учетом положения движка резистора R2) не достигнет напряжения стабилизации стабилитрона. Ток стабилитрона открывает транзистор Т1 и, воздействуя через усилительный элемент регулятора на обмотку возбуждения, вызовет уменьшение выходного напряжения генератора.

Усилительно-исполнительный элемент электронного регулятора напряжения должен обеспечивать полное прекращение тока возбуждения генератора в соответствии с сигналом измерительного элемента и возможно меньшее падение напряжения на исполнительном транзисторе (не более 0,25—0,4 В), что уменьшает рассеиваемую транзистором мощность и повышает стабильность работы всего устройства. Кроме этого, усилительно-исполнительный элемент должен обладать высокой чувствительностью с тем, чтобы коммутацию большого тока (до 3,0—3,5 А) обеспечить малым управляющим током (10—20 мА).

На рис. 3, а и б показаны схемы усилительно-исполнительных элементов, предназначенных для работы с описанными измерительными элементами (рис. 2, а и б, соответственно).

Рис. 3. Схемы усилительно-исполнительных элементов

Оба усилительно-исполнительных элемента обладают практически одинаковыми параметрами и отличаются в основном тем, что один из них (рис. 3, а) работает как усилитель без переворачивания фазы, а второй изменяет фазу сигнала на 180°, поскольку этого требует измерительный элемент.

Реле обратного тока в электронном регуляторе напряжения обычно выполняют на полупроводниковых диодах. Диоды чаще всего выбирают кремниевые, поскольку они обладают не только более высокой термостабильностью по сравнению с германиевыми, но и большим прямым падением напряжения на них (1,1—1,3 В), используемым для работы реле ограничения максимального тока (германиевые диоды имеют прямое падение напряжения 0,5—0,8 В).

В качестве реле ограничения максимального тока обычно используют транзистор, включенный параллельно измерительному элементу электронного регулятора напряжения и воздействующий на усилительно-исполнительный элемент таким образом, чтобы ток обмотки возбуждения генератора прекращался при увеличении тока нагрузки выше допустимой величины. Управляющим сигналом для транзистора реле ограничения максимального тока является падение напряжения на диодах реле обратного тока, через которые протекает общий ток нагрузки генератора.

Принципиальные схемы двух электронных регуляторов напряжения приведены на рис. 4 и 5.

Рис. 4. Принципиальная схема электронного регулятора

Рис. 5. Принципиальная схема улучшенного электронного регулятора

Особенностью второго регулятора (рис. 5) по сравнению с первым является подключение измерительного элемента не к выводу «Я» регулятора, а к выводу «Б», на котором напряжение «скорректировано» на величину падения напряжения на диодах Д4—Д6. Поэтому регулятор по схеме рис. 5 предпочтительнее, однако для сохранения высокой чувствительности регулятора в его измерительном элементе должен быть установлен транзистор с большим статическим коэффициентом передачи тока Вст (не менее 120).

Работу электронного реле-регулятора удобно рассмотреть по схеме, которая показана на рис. 4. После запуска двигателя генератор выдает небольшое начальное напряжение (6—7 В) за счет остаточного магнетизма стального корпуса и полюсных наконечников. Это напряжение, приложенное к выводу «Я», открывает транзистор Т1, через который начинает протекать ток базы транзистора Т2. Транзистор Т2 также открывается, что приводит в свою очередь к открыванию транзистора Т3. Через транзистор Т3 начинает протекать ток обмотки возбуждения генератора, вследствие чего его выходное напряжение возрастает. При напряжении генератора 9,9 В открывается стабилитрон Д1, поддерживая с этого момента на делителе R2—R3 постоянное напряжение. Напряжение на базе транзистора Т1 устанавливают в пределах 5,3—9,9 В. Напряжение генератора продолжает возрастать до величины, равной сумме напряжения стабилизации стабилитрона Д2 и падения напряжения в резисторе R5 (5,0—9,6 В), после чего стабилитрон Д2 входит в зону стабилизации, вызывая повышение напряжения на резисторе R5. Это приводит к резкому закрыванию транзистора Т1, а вслед за ним и транзисторов Т2 и Т3, и прекращению тока возбуждения генератора. Таким образом, напряжение генератора в пределах от 5,0 + 6,9 = = 11,9 В до 9,6 + 6,9 = 16,5 В будет поддерживаться на заданном уровне, которое устанавливают переменным резистором R2.

Поскольку управление током возбуждения генератора носит ключевой характер, а обмотка возбуждения обладает значительной индуктивностью, в ней при резком прекращении тока, возникают всплески напряжения самоиндукции, могущие вывести из строя транзистор Т3. Поэтому этот транзистор защищен диодом Д7, -включенным параллельно обмотке ОВ возбуждения генератора.

В качестве реле обратного тока работают диоды Д4 —Д6. Параллельное включение диодов имеет целью уменьшение рассеиваемой на них мощности при протекании тока нагрузки, достигающего 20 А. Такое включение диодов требует их подбора по одинаковому прямому падению напряжения на каждом из них при токе 6—7 А.

Читайте также:  Лопата для снега шнековая

Реле ограничения максимального тока выполнено на транзисторе Т4, переменном резисторе R7 и диоде Д3. Диод предохраняет реле от разрядного тока аккумуляторной батареи. Падение напряжения от протекающего через диоды Д4—Д6 тока нагрузки приложено к резистору R7, а с его движка — к базе транзистора Т4. В зависимости от тока нагрузки и положения движка резистора R7 на переход эмиттер — база этого транзистора поступает большее или меньшее напряжение. Если это напряжение достигает некоторой определенной величины, транзистор открывается, шунтируя транзисторы Т2 и Т3 и уменьшая тем самым ток обмотки возбуждения генератора. Напряжение генератора, а значит, и ток нагрузки уменьшаются. Реле ограничения максимального тока начинает работать только при перегрузках генератора. Режим управления током генератора — пульсирующий.

В описываемых устройствах не предусмотрена защита транзистора Т3 от коротких замыканий цепи его коллектора, которое возможно при пробое обмотки возбуждения генератора или случайном замыкании зажима «Ш» на корпус автомобиля. Принципиально такая защита может быть введена в устройства, но ее необходимость сомнительна, поскольку пробой обмоток возбуждения генераторов — явление очень редкое, а случайных замыканий вообще не следует допускать.

Электронный регулятор, собранный по схеме рис. 4, показал хорошие эксплуатационные характеристики. При изменении тока нагрузки от 5 до 15—18 А напряжение в бортовой сети изменяется на 0,2—0,25 В. Регулятор напряжения, выполненный по схеме рис. 5, обладает еще более высокой степенью стабилизации напряжения. Расход энергии от аккумуляторной батареи, к которой постоянно подключена цепочка R1—R3, очень невелик — примерно 10— 15 мА. При длительных стоянках автомобиля аккумуляторную батарею всегда следует отключать.

По принципу работы регулятор, собранный по схеме рис. 5, не отличается от предыдущего. Особенности его работы были отмечены выше.

Для повышения надежности и температурной стабильности работы регулятора диоды и транзисторы выбраны кремниевые (за исключением диода Д3, рис. 4, и Д2, рис.5). Переменные резисторы — проволочные с законтривающейся осью.

Транзистор Т1 в регуляторе, собранном по схеме рис. 4, должен иметь коэффициент Вст не менее 50. Транзисторы Т4 в обоих регуляторах желательно выбрать с достаточно высоким Вст. Остальные транзисторы подбора не требуют. Стабилитроны следует подобрать по напряжению стабилизации: Д1 — 9,9 В, Д2 — 6,9 В (рис. 4); Д1 — 9,4 В (рис.5). Напряжения стабилизации стабилитронов определяют границы диапазона регулирования напряжения генератора. Резисторы R6 (рис. 4) и R7 (рис. 5) должны быть рассчитаны на мощность рассеяния не менее 4 Вт.

Транзистор П210А необходимо устанавливать на радиатор в виде пластины или уголка из дюралюминия толщиной 4—5мм и общей площадью 30—40 см2. На таком же радиаторе площадью 50—70 см2 следует крепить и диоды Д4—Д6. На этих диодах выделяется значительная тепловая мощность.

Правильно собранный электронный регулятор начинает работать сразу. Напряжение устанавливают при работающем двигателе на уровне 13,7—14,0 В. Затем устанавливают максимальный ток нагрузки 20 А. Регулировочные работы можно провести и до установки регулятора на автомобиль. Для этого необходимы два источника постоянного тока: стабилизированный с плавной регулировкой напряжения в пределах от 10 В до 17 В и током нагрузки до 5 А и любой на 12—13 В с допустимым током нагрузки 20—25 А (например, автомобильный аккумулятор 6СТ42).

Сначала собирают стенд по схеме, изображенной на рис. 6, а.

Рис. 6. Схемы регулировочных стендов для налаживания электронных регуляторов

Амперметр ИП2 должен иметь шкалу до 5 А. Переменные резисторы электронного регулятора устанавливают в положения, соответствующие нижним пределам регулировки (R2 — в нижнее, R7 — в верхнее по схеме, рис. 4, R2 и R8 — в верхнее, рис. 5). Устанавливают источник стабилизированного напряжения на 10 В, включают тумблер В1 и проверяют ток амперметра ИП2, который должен быть примерно равен I = Uпит/Rl (этот ток имитирует ток возбуждения генератора). Затем, медленно увеличивая напряжение источника, замечают по вольтметру ИП1 момент резкого прекращения тока, протекающего через амперметр. Уменьшают теперь напряжение источника до момента появления тока в цепи амперметра. Разность между этими напряжениями определяет чувствительность реле напряжения. Хорошей чувствительностью следует считать 0,1 В, допустимой — 0,2 В. При более низкой чувствительности следует подобрать транзистор Т1 с большим коэффициентом Вст. Затем проверяют чувствительность на верхнем пределе регулирования напряжения (R2 переводят, в другое крайнее положение). Чувствительность на верхнем пределе может быть хуже не более чем на 10-30%. Устанавливают резистор R2 и положение, соответствующее напряжению срабатывания реле напряжения, рамному 14 В.

Затем собирают peгулировочный стенд по схеме, показанной на рис. 6,б. Амперметр ИП1 должен быть рассчитан на ток до 25 А, а ИП2 — до 5 А. Реостат R2 должен допускать рассеяние мощности до 20 Вт. Устанавливают движок R2 примерно на середину и включают тумблер В1. Амперметр ИП2 должен показывать ток 20—25 А. Ток амперметра ИП1 должен быть равен нулю, т. е. регулятор закрыт по току перегрузки. Если теперь выключить тумблер B1, вывести движок резистора R7 (R9, по рис. 5) регулятора в нижнее по схеме положение, соответствующее максимальному пределу ограничения тока нагрузки, и снова включить тумблер, ток амперметра ИП2 останется прежним, а амперметр ИП1 покажет ток, равный Uпит/Rl. Тумблер В1 следует включать на короткое время, поскольку аккумуляторная батарея при этом интенсивно разряжается. Для установки предела ограничения максимального тока нагрузки необходимо установить ползунком реостата R2 ток амперметра ИП2, равный 20 А, а затем, вращая ось резистора R7 (R8, рис. 5) электронного регулятора, добиться прекращения тока, протекающего через амперметр ИП1.

Электронный регулятор напряжения удобно устанавливать на автомобиле рядом с РРН с тем, чтобы при необходимости можно было легко их переключать.

В заключение следует отметить, что не все экземпляры автомобильных генераторов имеют начальное напряжение около 6 В. У некоторых из них оно не превышает 1—2 В. С такими генераторами электронный регулятор работать не сможет — транзистор Т3 останется закрытым, и ток обмотки возбуждения будет равным нулю. В подобных случаях электронный регулятор напряжения следует выполнить по схеме, изображенной на рис. 7.

Рис. 7. Вариант принципиальной схемы электронного регулятора

Характеристики этого регулятора практически такие же, как и у описанных выше устройств. Транзистор Т1 можно заменить на КТ602, Т5 — на МП115. Резистор R6 должен рассеивать мощность не менее 4 Вт. Можно также обойтись незначительными изменениями базовой цепи транзистора Т4 в регуляторе по схеме рис. 4. Изменения сводятся к включению диода между базой транзистора и движком резистора R7 и изменению места включения диода Д3 — он должен быть включен в той же полярности в разрыв нижнего по схеме вывода резистора R7. Однако при этом несколько ухудшится точность поддержания напряжения на выходном зажиме «Б». Оба диода — типа Д223Б.

В помощь радиолюбителю» выпуск 53

Читайте также:  Каким образом стусло помогает распилить несколько заготовок

Усовершенствование электронного регулятора напряжения.

В сборнике «В помощь радиолюбителю» выпуск 53 в статье «Электронный регулятор напряжения» (с. 81 — 90) описаны несколько электронных регуляторов напряжения для автомобиля. В усилительно-исполнительном элементе всех этих устройств использован мощный германиевый транзистор П210А (Т3). Выбор именно этого транзистора был обусловлен отсутствием кремниевого аналога структуры р—n—р.

Тем не менее очевидно, что кремниевый транзистор здесь предпочтительнее, так как обеспечивает более надежную работу регулятора напряжения в условиях повышенной температуры. Поэтому была разработана схема регулятора, аналогичного по принципу работы и характеристикам устройству по схеме рис. 5 в упомянутой выше статье, но с мощным кремниевым транзистором структуры п—р—п.

Регулятор (см. схему), имеет некоторые особенности, на которых целесообразно кратко остановиться. Использование кремниевого транзистора КТ808А (V9; можно также использовать и транзистор КТ803А) потребовало включения в устройство дополнительного транзистора V8 (П303А; его можно заменить на П302 — П304, П306, П306А со статическим коэффициентом передачи тока не менее 15), повышающего к тому же чувствительность устройства.

Рис. Схема регулятора напряжения

В измерительном элементе в делителе напряжения вместо резистора использована диодная цепь V1, V2, обеспечивающая температурную компенсацию стабилитрона V3. Этим изменением температурная нестабильность регулятора напряжения в целом сведена практически к нулю.

Незначительные изменения в базовой цепи транзистора V5 по сравнению с исходным вариантом принципиально не изменили работы ограничителя максимального тока генератора, но улучшили плавность и повысили точность установки порога ограничения.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

ActionTeaser NEWS

Статистика

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 – к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 – СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 – К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2. 4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г – другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150. 250, у VT2 – 250. 270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50. 100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300. 600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической "1") на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня ("О") при совладении входных сигналов. В результате этого "Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух "1" (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Читайте также:  Схема трансформатора 220 на 12 вольт

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Простой универсальный регулятор мощности.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме – родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А.
Все резисторы МЛТ 0,125;
R4 – СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа – К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт – никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день!

Anything in here will be replaced on browsers that support the canvas element

Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока – неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта – эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

Ссылка на основную публикацию
Adblock detector