Электромагнитный импульс при ядерном взрыве

Ядерный взрыв сопровождается электромагнитным излучением в виде мощного короткого импульса, поражающего главным образом, электрическую и электронную аппаратуру.

Источники возникновения электромагнитного импульса (ЭМИ). По природе ЭМИ с некоторыми допущениями можно сравнить с электромагнитным полем близкой молнии, создающим помехи для радиоприемников. Длина волн колеблется от 1 до 1000 м и более. Возникает ЭМИ в основном в результате взаимодействия гамма-излучения, образующегося во время взрыва, с атомами окружающей среды.

При взаимодействии гамма-квантов с атомами среды последним сообщается импульс энергии, небольшая доля которой тратится на ионизацию атомов, а основная – на сообщение поступательного движения электронам и ионам, образовавшимся в результате ионизации. Ввиду того, что электрону сообщается значительно больше энергии, чем иону, а также из-за большой разницы в массе электроны обладают более высокой скоростью по сравнению с ионами. Можно считать, что ионы практически остаются на месте, а электроны удаляются от них со скоростями, близкими к скорости света в радиальном направлении от центра взрыва. Таким образом, в пространстве на некоторое время происходит разделение положительных и отрицательных зарядов.

Вследствие того, что плотность воздуха в атмосфере уменьшается с высотой, в области, окружающей место взрыва, получается асимметрия в распределении электрического заряда (потока электронов). Асимметрия потока электронов может возникнуть также из-за несимметричности самого потока гамма-квантов ввиду различной толщины оболочки бомбы, а также наличия магнитного поля Земли и других факторов. Несимметричность электрического заряда (потока электронов) в месте взрыва в воздухе вызывает импульс тока. Он излучает электромагнитную энергию так же, как и прохождение его в излучающей антенне.

Район, где гамма-излучение взаимодействует с атмосферой, называется районом источника ЭМИ. Плотная атмосфера вблизи земной поверхности ограничивает область распространения гамма-квантов (сердняя длина свободного пробега составляет сотни метров). Поэтому при наземном взрыве район источника занимает площадь всего в несколько квадратных километров и примерно совпадает с районом, где воздействуют другие поражающие факторы ядерного взрыва.

При высотном ядерном взрыве гамма-кванты могут пройти сотни километров до взаимодействия с молекулами воздуха и вследствие его разреженности проникнуть глубоко в атмосферу. Поэтому размеры района источника ЭМИ получаются большими. Так, при высотном взрыве боеприпаса мощностью 0,5-2 млн. т может образоваться район источника ЭМИ диаметром до 1600-3000 км и толщиной около 20 км, нижняя граница которого пройдет на высоте 18-20 км (рис. 1.4).

Рис. 1.4. Основные варианты ЭМИ-обстановки: 1 – ЭМИ-обстановка района источника и образования полей излучения наземного и воздушного взрывов; 2 – подземная ЭМИ-обстановка на некотором расстоянии от взрыва вблизи поверхности; 3 – ЭМИ-обстановка высотного взрыва.

Большие размеры района источника при высотном взрыве порождают интенсивный ЭМИ, направленный вниз, над значительной частью земной поверхности. Поэтому очень большой район может оказаться в условиях сильного воздействия ЭМИ, где другие поражающие факторы ядерного взрыва практически не действуют.

Таким образом, при высотных ядерных взрывах объекты полиграфии, находящиеся и за пределами очага ядерного поражения, могут подвергнуться сильному воздействию ЭМИ.

Основными параметрами ЭМИ, определяющими поражающее действие, являются характер изменения напряженности электрического и магнитного полей во времени – форма импульса и максимальная напряженность поля – амплитуда импульса.

ЭМИ наземного ядерного взрыва на расстоянии до нескольких километров от центра взрыва представляет собой одиночный сигнал с крутым передним фронтом и длительностью в несколько десятков миллисекунд (рис. 1.5).

Рис. 1.5. Изменение напряженности поля электромагнитного импульса: а – начальная фаза; б – основная фаза; в – длительность первого квазиполупериода.

Энергия ЭМИ распространена в широком диапазоне частот от десятков герц до нескольких мегагерц. Однако высокочастотная часть спектра содержит незначительную долю энергии импульса; основная же часть его энергии приходится на частоты до 30 кГц.

Амплитуда ЭМИ в указанной зоне может достигать очень больших значений – в воздухе тысяч вольт на метр при взрыве боеприпасов малой мощности и десятков тысяч вольт на метр при взрывах боеприпасов большой мощности. В грунте амплитуда ЭМИ может доходить соответственно до сотен и тысяч вольт на метр.

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, ЭМИ наземного ядерного взрыва поражает только на расстоянии нескольких километров от центра взрыва; на больших расстояниях оно оказывает только кратковременное отрицательное воздействие на работу радиотехнической аппаратуры.

Для низкого воздушного взрыва параметры ЭМИ в основном остаются такими же, как и для наземного взрыва, но с увеличением высоты взрыва амплитуда импульса у поверхности земли уменьшается.

При низком воздушном взрыве мощностью 1 млн.т ЭМИ с поражающими величинами напряженности полей распространяются на площади с радиусом до 32 км, 10 млн. т – до 115 км.

Амплитуда ЭМИ подземного и подводного взрывов значительно меньше амплитуды ЭМИ при взрывах в атмосфере, поэтому поражающее действие его при подземном и подводном взрывах практически не проявляется.

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках, расположенных в воздухе, земле, на оборудовании других объектов.

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, его поражающее действие – несколько километров от центра (эпицентра) взрыва крупного калибра. Так, при наземном взрыве мощностью 1 Мт вертикальная составляющая электрического поля ЭМИ на расстоянии 4 км – 3 кВ/м, на расстоянии 3 км – 6 кВ/м, и 2 км – 13 кВ/м.

ЭМИ непосредственного действия на человека не оказывает. Приемники энергии ЭМИ – проводящие электрический ток тела: все воздушные и подземные линии связи, линии управления, сигнализации (так как они имеют электрическую прочность, не превышающую 2-4 кВ напряжения постоянного тока), электропередачи, металлические мачты и опоры, воздушные и подземные антенные устройства, наземные и подземные турбопроводы, металлические крыши и другие конструкции, изготовленные из металла. В момент взрыва в них на доли секунды возникает импульс электрического тока и появляется разность потенциала относительно земли. Под действием этих напряжений может происходить: пробой изоляции кабелей, повреждение входных элементов аппаратуры, подключенной к антеннам, воздушным и подземным линиям (пробой трансформаторов связи, выход из строя разрядников, предохранителей, порча полупроводниковых приборов и т.д., а также выгорание плавких вставок, включенных в линии для защиты аппаратуры. Высокие электрические потенциалы относительно земли, возникающие на экранах, жилах кабелей, антенно-фидерных линиях и проводных линиях связи могут представлять опасность для лиц, обслуживающих аппаратуру.

Наибольшую опасность ЭМИ представляет для аппаратуры, не оборудованной специальной защитой, даже если она находится в особо прочных сооружениях, способных выдерживать большие механические нагрузки от действия ударной волны ядерного взрыва. ЭМИ для такой аппаратуры является главным поражающим фактором.

Линии электропередач и их оборудование, рассчитанные на напряжение в десятки, сотни кВт, являются устойчивыми к воздействию электромагнитного импульса.

Необходимо также учитывать одновременность воздействия импульса мгновенного гамма-излучения и ЭМИ: под действием первого – увеличивается проводимость материалов, а под действием второго – наводятся дополнительные электрические токи. Кроме того, следует учитывать их одновременное воздействие на все системы, находящиеся в районе взрыва.

На кабельных и воздушных линиях, попавших в зону мощных импульсов электромагнитного излучения, возникают (наводятся) высокие электрические напряжения. Наведенное напряжение может вызывать повреждения входных цепей аппаратуры на довольно удаленных участках этих линий.

В зависимости от характера воздействия ЭМИ на линии связи и подключенную к ним аппаратуру рекомендуются следующие способы защиты: применение двухпроводных симметричных линий связи, хорошо изолированных между собой и от земли; исключение применения однопроводных наружных линий связи; экранирование подземных кабелей медной, алюминиевой, свинцовой облочкой; электромагнитное экранирование блоков и узлов аппаратуры; использование различного рода защитных входных устройств и грозозащитных средств.

Читайте также:  Мини пульверизатор для краски

awaken_777

"
ТЕМА: ЭЛЕКТРОМАГНИТНЫЙ ИМПУЛЬС ЯДЕРНОГО ВЗРЫВА И ЗАЩИТА ОТ НЕГО РАДИОЭЛЕКТРОННЫХ СРЕДСТВ.

С О Д Е Р Ж А Н И Е

1. НЕСМЕРТЕЛЬНОЕ ОРУЖИЕ.

2. ВЗГЛЯДЫ РУКОВОДСТВА США И НАТО НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА В ВОЕННЫХ ЦЕЛЯХ.

3. ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В ОБЛАСТИ ЭМИ.

4. ИСПОЛЬЗОВАНИЕ ИМИТАТОРОВ ЭМИ ДЛЯ НАБОРА ЭКСПЕРИМЕНТАЛЬНЫХ ЗНАНИЙ.

5. ВОЗМОЖНЫЕ ПУТИ РЕШЕНИЯ ЗАДАЧИ ЗАЩИТЫ ОТ ЭМИ.

1. НЕСМЕРТЕЛЬНОЕ ОРУЖИЕ.

Военно-политическое руководство США, не отказываясь от использования насилия в качестве одного из главных инструментов достижения своих целей, осуществляет поиск новых способов ведения боевых действий и создает для них средства, в полной мере учитывающие реалии современности.

В начале 90-х годов в США стала зарождаться концепция, согласно которой вооруженные силы страны должны иметь не только ядерные и обычные вооружения, но и специальные средства, обезпечивающие эффективное участие в локальных конфликтах без нанесения противнику излишних потерь в живой силе и материальных ценностях.

К этому специальному оружию американские военные специалисты в первую очередь относят: средства создания электромагнитного импульса(ЭМИ); генераторы инфразвука; химические составы и биологические рецептуры, способные изменять структуру базовых материалов основных элементов боевой техники; вещества, которые выводят из строя смазку и резиновые изделия, вызывают загустение горючего; лазеры.

В настоящее время основные работы по развитию технологий оружия несмертельного действия(ОНСД) проводятся в управлении перспективных исследований министерства обороны, Ливерморской и Лос-Аламосской лабораториях министерства энергетики, центре разработок вооружения министерства армии и т.д. Наиболее близки к принятию на вооружение различные типы лазеров для ослепления личного состава, химические средства для его обездвиживания, генераторы ЭМИ, отрицательно влияющие на работу электронной техники.

ОРУЖИЕ ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА.

Генераторы ЭМИ (супер ЭМИ), как показывают теоретические работы и проведенные за рубежом эксперименты, можно эффективно использовать для вывода из строя электронной и электротехнической аппаратуры, для стирания информации в банках данных и порчи ЭВМ.

С помощью ОНСД на основе генераторов ЭМИ возможен вывод из строя ЭВМ, ключевых радио и электротехнических средств, систем электронного зажигания и других автомобильных агрегатов, подрыв или инактивация минных полей. Воздействие этого оружия достаточно избирательно и поли¬тически вполне приемлемо, однако требуется точная доставка его в райо ны поражаемой цели.

2. ВЗГЛЯДЫ РУКОВОДСТВА США И НАТО НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРО- МАГНИТНОГО ИМПУЛЬСА В ВОЕННЫХ ЦЕЛЯХ.

Несмотря на признание военно-политическим руководством США и НАТО невозможности победы в ядерной войне, различные аспекты поражающего действия ядерного оружия продолжают широко обсуждаться. Так, в одном из рассматриваемых иностранными специалистами сценариев начального пе¬риода ядерной войны особое место отводится потенциальной возможности вывода из строя радиоэлектронной техники в результате воздействия на неё ЭМИ. Считается, что подрыв на высоте около 400 км. только одного боеприпаса мощностью более 10 Мт приведет к такому нарушению функционирования радиоэлектронных средств в обширном районе, при котором время их восстановления превысит допустимые сроки для принятия ответ ных мер.

По расчетам американских экспертов, оптимальной точкой подрыва ядерного боеприпаса для поражения ЭМИ радиоэлектронных средств почти на всей территории США была бы точка в космосе с эпицентром в районе географического центра страны, находящегося в штате Небраска.

Теоретические исследования и результаты физических экспериментов показывают, что ЭМИ ядерного взрыва может привести не только к выходу из строя полупроводниковых электронных устройств, но и к разрушению металлических проводников кабелей наземных сооружений. Кроме того воз¬можно поражение аппаратуры ИСЗ, находящихся на низких орбитах.

Для генерации ЭМИ ядерный боеприпас может подрываться в космичес ком пространстве, что не приводит к возникновению ударной волны и выпадению радиоактивных осадков. Поэтому в зарубежной прессе высказывют ся следующие мнения о "неядерном характере" такого боевого применения ядерного оружия и о том, что удар с использованием ЭМИ не обязательно приведет к всеобщей ядерной войне. Опасность этих заявлений очевидна, т.к. одновременно некоторые зарубежные специалисты не исключают воз можность массового поражения с помощью ЭМИ и живой силы. Во всяком случае вполне очевидно, что наводимые под воздействием ЭМИ в металли ческих элементах техники токи и напряжения будут смертельно опасны для личного состава.

3. ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В ОБЛАСТИ ЭМИ.

Для того, чтобы понять всю сложность проблем угрозы ЭМИ и мер по защите от неё, необходимо кратко рассмотреть историю изучения этого физического явления и современное состояние знаний в этой области.

То, что ядерный взрыв будет обязательно сопровождаться электро¬магнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в конце 50-х – начале 60-х годов ядерных взрывов в атмосфере и космичес ком пространстве наличие ЭМИ было зафиксировано экспериментально. Одна ко количественные характеристики импульса измерялись в недостаточной степени, во-первых, потому что отсутствовала контрольно-измерительная аппаратура, способная регистрировать чрезвычайно мощное электромагнитное излучение, существующее чрезвычайно короткое время (миллионные до¬ли секунду), во-вторых, потому что в те годы в радиоэлектронной аппа¬ратуре использовались исключительно электровакуумные приборы, которые мало подвержены воздействию ЭМИ, что снижало интерес к его изучению.

Создание полупроводниковых приборов, а затем и интегральных схем, особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ. С 1970 года вопросы защиты оружия и военной техники от ЭМИ стали рассматриваться министерством обороны США как имеющие высшую приоритетность.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтро нов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов, выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого по ля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетки. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжитель ность данного процесса с момента взрыва от 1 – 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ соз дается комптоновскими электронами, выбитыми из молекул многократно от раженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой ста дии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания амплитуды импульса (максимум достигается на 3 – 5 нс после взрыва) наведен ное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорциональна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля. Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

Читайте также:  Распределитель воздуха для компрессора

ЭМИ генерируются и при других видах ядерных взрывов – воздушном и наземном. Теоретически установлено, что в этих случаях его интенсив ность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность, однако она быстро уменьшается по мере удаления от эпицентра.

4. ИСПОЛЬЗОВАНИЕ ИМИТАТОРОВ ЭМИ ДЛЯ НАБОРА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ.

Поскольку сбор экспериментальных данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение набора данных достигается методами и средствами физического моделирования.

Среди капиталистических стран передовые позиции в разработке и практическом использовании имитаторов ЭМИ ядерного взрыва занимают США. Подобные имитаторы представляют собой электрогенераторы со специальными излучателями, создающими электромагнитное поле с параметрами близкими к тем, которые характерны для реального ЭМИ. В зону действия излучателя помещаются испытываемый объект и приборы, регистрирующие интенсивность поля, его частотный спектр и длительность воздействия.

Один из таких имитаторов, развёрнутый на авиабазе ВВС США Кирт-ленд, предназначен для моделирования условий воздействия ЭМИ на само лет и его аппаратуру. Он может использоваться для испытаний таких крупных летательных аппаратов, как бомбардировщик В-52 или гражданский авиалайнер Боинг-747.

В настоящее время создано и действует большое количество имитаторов ЭМИ для испытаний авиационной, космической, корабельной и наземной техники. Однако они не в полной мере воссоздают реальные условия воз¬действия ЭМИ ядерного взрыва вследствие ограничений, накладываемых ха¬рактеристиками излучателей, генераторов и источников электропитания на частотный спектр излучения, его мощность и скорость нарастания импуль са. Вместе с тем, и при этих ограничениях удается получить достаточно полные и надежные данные о появлении неисправностей в полупроводнико вых приборах, сбоя в их функционировании и т.п., а также об эффектив ности действия различных защитных устройств. Кроме того, такие испыта ния позволили дать количественную оценку опасности различных путей воздействия ЭМИ на радиоэлектронную технику.

Теория электромагнитного поля показывает, что такими путями для наземной техники являются прежде всего различные антенные устройства и кабельные вводы системы электропитания, а для авиационной и космичес кой техники – антенны, а также токи, наводимые в обшивке, и излучения, проникающие через остекление кабин и лючки из нетокопроводящих матери¬алов. Токи, наводимые ЭМИ в наземных и заглубленных кабелях электропи¬тания протяженностью в сотни и тысячи километров, могут достигать ты сяч ампер, а напряжение в разомкнутых цепях таких кабелей – миллион вольт. В антенных вводах, длина которых не превышает десятков метров, наводимые ЭМИ токи могут иметь силу в несколько сотен ампер. ЭМИ, про никающий непосредственно через элементы сооружений из диэлектрических материалов (неэкранированные стены, окна, двери и т.п.), может наводить во внутренней электропроводке токи силой в десятки ампер.

Поскольку слаботочные цепи и радиоэлектронные приборы нормально действуют при напряжениях в несколько вольт и токах силой до несколь ких десятков миллиампер, то для их абсолютно надежной защиты от ЭМИ требуется обезпечить снижение величины токов и напряжений в кабелях, до шести порядков.

5. ВОЗМОЖНЫЕ ПУТИ РЕШЕНИЯ ЗАДАЧИ ЗАЩИТЫ ОТ ЭМИ.

Идеальной защитой от ЭМИ явилось бы полное укрытие помещения, в котором размещена радиоэлектронная аппаратура, металлическим экраном. Вместе с тем ясно, что практически обезпечить такую защиту в ряде слу чаев невозможно, т.к. для работы аппаратуры часто требуется обезпечить её электрическую связь с внешними устройствами. Поэтому используются менее надежные средства защиты, такие, как токопроводящие сетки или пленочные покрытия для окон, сотовые металлические конструкции для воздухозаборников и вентиляционных отверстий и контактные пружинные прокладки, размещаемые по периметру дверей и люков.

Более сложной технической проблемой считается защита от проникно вения ЭМИ в аппаратуру через различные кабельные вводы. Радикальным решением данной проблемы мог бы стать переход от электрических сетей связи к практически не подверженным воздействию ЭМИ волоконно-оптичес ким. Однако замена полупроводниковых приборов во всем спектре выполня емых ими функций электронно-оптическими устройствами возможно только в отдаленном будущем. Поэтому в настоящее время в качестве средств защи ты кабельных вводов наиболее широко используются фильтры, в том числе волоконные, а также искровые разрядники,металлоокисные варисторы и вы¬сокоскоростные зенеровские диоды.

Все эти средства имеют как преимущества, так и недостатки. Так, емкостно-индуктивные фильтры достаточно эффективны для защиты от ЭМИ малой интенсивности, а волоконные фильтры защищают в относительно уз ком диапазоне сверхвысоких частот. Искровые разрядники обладают значи¬тельной инерционностью и в основном пригодны для защиты от перегрузок, возникающих под воздействием напряжений и токов, наводимых в обшивке самолета, кожухе аппаратуры и оплетке кабеля.

Металлоокисные варисторы, представляют собой полупроводниковые приборы, резко повышающие свою проводимость при высоком напряжении. Однако, при применении этих приборов в качестве средств защиты от ЭМИ следует учитывать их недостаточно высокое быстродействие и ухудшение характеристик при неоднократном воздействии нагрузок. Эти недостатки отсутствуют у высокоскоростных зенеровских диодов, действие которых основано на резком лавинообразном изменении сопротивления от относительно высокого значения практически до нуля при превышении приложен ного к ним напряжения определенной пороговой величины. Кроме того в отличии от варисторов характеристики зенеровских диодов после многок ратных воздействий высоких напряжений и переключений режимов не ухуд шаются.

Наиболее рациональным подходом к проектированию средств защиты от ЭМИ кабельных вводов является создание таких разъемов, в конструкции которых предусмотрены специальные меры, обезпечивающие формирование элементов фильтров и установку встроенных зенеровских диодов. Подобное решение способствует получению очень малых значений емкости и индуктивности, что необходимо для обезпечения защиты от импульсов, которые имеют незначительную длительность и, следовательно, мощную высокочас тотную составляющую. Использование разъемов подобной конструкции поз волит решить проблему органичения массо-габаритных характеристик устройства защиты.

Сложность решения задачи защиты от ЭМИ и высокая стоимость разработанных для этих целей средств и методов заставляют пойти на первых парах по пути их выборочного применения в особо важных системах оружия и военной техники. Первыми целенаправленными работами в данном направ лении были программы защиты от ЭМИ стратегического оружия. Такой же путь избран и для защиты имеющих большую протяженность систем управле ния и связи. Однако основным методом решения данной данной проблемы зарубежные специалисты считают создание так называемых распределенных сетей связи (типа "Гвен"), первые элементы которых уже развернуты на континентальной части США.

Современное состояние проблемы ЭМИ можно оценить следующим образом. Достаточно хорошо исследованы теоретически и подтверждены экспериментально механизмы генерации ЭМИ и параметры его поражающего действия. Разработаны стандарты защищенности аппаратуры и известны эффективные средства защиты. Однако для достижения достаточной уверенности в надежности защиты систем и средств от ЭМИ необходимо провести испы тания с помощью имитатора. Что касается полномасштабных испытаний сис тем связи и управления, то эта задача вряд ли будет решена в обозримом будущем.

Для того, чтобы понять всю сложность проблем угрозы ЭМИ и мер по защите от нее, необходимо кратко рассмотреть историю изучения этого физического явления и современное состояние знаний в этой области.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в конце 50-х – начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.

Однако количественные характеристики импульса измерялись в недостаточной степени, во-первых, потому что отсутствовала контрольно-измерительная аппаратура, способная регистрировать чрезвычайно мощное электромагнитное излучение, существующее чрезвычайно короткое время (миллионные доли секунду), во-вторых, потому что в те годы в радиоэлектронной аппаратуре использовались исключительно электровакуумные приборы, которые мало подвержены воздействию ЭМИ, что снижало интерес к его изучению. Создание полупроводниковых приборов, а затем и интегральных схем, особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ.

Читайте также:  Пайка микросхем в домашних условиях видео

Описание физика ЭМИ.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов, выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетке. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 – 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания амплитуды импульса (максимум достигается на 3 – 5 нс после взрыва) наведенное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва. Кроме временного нарушения функционирования (функционального подавления) РЭС, допускающего последующее восстановление их работоспособности, ЭМИ оружие может осуществлять физическое разрушение (функциональное поражение) полупроводниковых элементов РЭС, в том числе находящихся в выключенном состоянии.

Следует отметить также возможность поражающего действия мощного излучения ЭМИ оружия на электротехнические и электро энергетические системы вооружения и военной техники (ВВТ), электронные системы зажигания двигателей внутреннего сгорания (рис.1). Токи, возбуждаемые электромагнитным полем в цепях электро или радиовзрывателей, установленных на боеприпасах, могут достигать уровней, достаточных для их срабатывания. Потоки высокой энергии в состоянии инициировать детонацию взрывчатых веществ (ВВ) боеголовок ракет, бомб и артиллерийских снарядов, а также неконтактный подрыв мин в радиусе 50–60 м от точки подрыва ЭМИ боеприпаса средних калибров (100–120 мм).

Рис.1.Принудительная остановка автомобиля с электронной системой зажигания.

В отношении поражающего действия ЭМИ оружия на личный состав, как правило, речь идет об эффектах временного нарушения адекватной сенсомоторики человека, возникновения ошибочных действий в его поведении и даже потери трудоспособности. Существенно, что негативные проявления воздействия мощных сверхкоротких СВЧ-импульсов не обязательно связаны с тепловым разрушением живых клеток биологических объектов. Поражающим фактором зачастую является высокая напряженность наведенного на мембранах клеток электрического поля, сравнимая с естественной квазистатической напряженностью собственного электрического поля внутриклеточных зарядов В опытах на животных установлено, что уже при плотности импульсно-модулированного СВЧ облучения на поверхности биологических тканей в 1, 5 мВт/см2 имеет место достоверное изменение электрических потенциалов мозга. Активность нервных клеток изменяется под действием одиночного СВЧ импульса продолжительностью от 0, 1 до 100 мс, если плотность энергии в нем достигает 100 мДж/см2. Последствия подобного влияния на человека пока мало изучены, однако известно, что облучение импульсами СВЧ иногда порождает звуковые галлюцинации, а при усилении мощности возможна даже потеря сознания.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорциональна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля.

Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

ЭМИ генерируются и при других видах ядерных взрывов – воздушном и наземном. Теоретически установлено, что в этих случаях его интенсивность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность, однако она быстро уменьшается по мере удаления от эпицентра.

Поскольку сбор экспериментальных данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение набора данных достигается методами и средствами физического моделирования.

Источники ЭМИ (оружие не летального воздействия). ЭМИ оружие может быть создано как в виде стационарных и мобильных электронных комплексов направленного излучения, так и в виде электромагнитных боеприпасов (ЭМБ), доставляемых к цели с помощью артиллерийских снарядов, мин, управляемых ракет(рис.2), авиабомб и т. п.

Стационарный генератор позволяет воспроизводить ЭМИ с горизонтальной поляризацией электрического поля. Он включает в себя высоковольтный генератор электрических импульсов (4 МВ), симметричную вибраторную излучающую антенну на двух мачтах и открытую бетонированную испытательную площадку. Установка обеспечивает формирование над испытательной площадкой (на высотах З и 10 м) ЭМИ с напряженностью поля, равной соответственно 35 и 50 кВ/м.

Мобильный (Транспортабельный) генератор НРDII предназначен для моделирования горизонтально поляризованного ЭМИ. Он включает в себя смонтированные на платформе трейлера высоковольтный генератор импульсов и симметричную вибраторную антенну, а также размещенную в отдельном фургоне аппаратуру сбора и обработки данных.

В основу ЭМБ положены методы преобразования химической энергии взрыва, горения и электрической энергии постоянного тока в энергию электромагнитного поля высокой мощности. Решение проблемы создания ЭМИ боеприпасов связано, прежде всего, с наличием компактных источников излучения, которые могли бы располагаться в отсеках боевой части управляемых ракет, а также в артиллерийских снарядах.

Наиболее компактными на сегодня источниками энергии для ЭМБ считаются спиральные взрывомагнитные генераторы (ВМГ), или генераторы с взрывным сжатием магнитного поля, имеющие наилучшие показатели удельной плотности энергии по массе (100 кДж/кг) и объему (10 кДж/см3), а также взрывные магнитодинамические генераторы (ВМДГ). В ВМГ с помощью взрывчатого вещества происходит преобразование энергии взрыва

в энергию магнитного поля с эффективностью до 10%, а при оптимальном выборе параметров ВМГ – даже до 20%. Такой тип устройств способен генерировать импульсы энергией в десятки мега джоулей и длительностью до 100 мкс. Пиковая мощность излучения может достигать 10 ТВт. ВМГ могут применяться автономно или как один из каскадов для накачки генераторов СВЧ диапазона. Ограниченная спектральная полоса излучения ВМГ (до нескольких мегагерц) делает их влияние на РЭС довольно избирательным.

Рис.2. Конструкция (а) и принцип (б) боевого применения типового ЭМБ.

Вследствие этого возникает проблема создания компактных антенных систем, согласованных с параметрами генерируемого ЭМИ. В ВМДГ взрывчатка или ракетное топливо применяются для образования плазменного потока, быстрое перемещение которого в магнитном поле приводит к возникновению сверхмощных токов сопутствующим электромагнитным излучением.

Основное преимущество ВМДГ многоразовость применения, поскольку картриджи со взрывчаткой или ракетным топливом могут закладываться в генератор многократно. Однако его удельные массогабаритные характеристики в 50 раз ниже, чем у ВМГ, и вдобавок технология ВМДГ еще не достаточно отработана, чтобы в ближайшей перспективе делать ставку на эти источники энергии.

Ссылка на основную публикацию
Adblock detector