Электрическая схема пресса гидравлического

2. Электрическая схема управления прессом ПВГ-8-2-0

Электрооборудование пресса, размещенное в шкафу управления и на прессе, включает в себя электродвигатели привода гидронасоса и регулировки ударника по высоте, электромагнит золотника, панель управления, кнопки включения, сигнальную лампу, технологический контакт для работы на неметаллической плитке, розетки штепсельные.

При нажатии на кнопку S3 (автоматический выключатель S1 включен) включается магнитный пускатель К1 (рис.2), который самоблокируется контактом К1.1, а контактами К1.2 включает электродвигатель М1 гидронасоса и одновременно подает напряжение в остальную часть схемы через контакт К1.3. Со вторичной обмотки трансформатор Т напряжения подается на выпрямительный мост VD, питающий каскад запуска и отключения пресса. Сигнальная лампа EL загорается, сигнализируя о готовности пресса к работе. Масло насосом 21 (рис.3) подается по трубопроводу 19 через золотник 18 и трубопровод 14 в цилиндр 12 (отвод ударника 9), пройдя через который масло по трубопроводу 11 идет на слив в бак 13. Насос работает в холостом режиме.

После установки резака на раскраиваемом материале работница обеими руками нажимает одновременно ладонные кнопки S6 и S7, включается одна из катушек реле K4 (реле К4 имеет две катушки, включенные так, что их ЭДС направлены друг против друга). Контакты К4.1 и К4.2 замыкаются, напряжение через диод VD1 по цепочке S6-S7-VA-VD1-R1-K4.1-K4.2 подается на управляющий электрод тиристора VD3 и открывает его. Происходит полупериодное включение электромагнита VA по цепи S6-S7-VA-VD3-(R2-R3). Второе полупериодное включение электромагнита VA по цепи S6-S7-VA-VD4-(R2-R3) осуществляется при подаче напряжения на управляющий электрод тиристора VD4 через диод VD2.

Таким образом электромагнит получает питание переменным током напряжением 220 В и, срабатывая, переключает золотник 18 в положение, при котором масло от насоса поступает через трубопровод 3, золотник 2 и трубопровод 5 в цилиндр 7 подвода ударника. Плавающий поршень 6 перемещает рейку 8 вправо, обеспечивая поворот ударника в рабочее положение. Плавающий поршень 10 цилиндра 12 отвода ударника при этом вытесняет масло из цилиндра по трубопроводу 14 через золотник 18 в бак. После окончания подвода ударника масло через открывшееся отверстие в цилиндре 7 по трубопроводу 4 подается к золотника 2 и переключает его, направляя поток масла от насоса по трубопроводам 3 и 17 через полный шток в рабочий цилиндр ударного механизма. Под давлением масла, преодолевающего сопротивление сжатого воздуха, скалка с ударником опускается, с помощью резака вырубая детали. В конце процесса прорубания материала замыкается технологический контакт S8 (или изолированная плита пресса с заземленным ударником) включается реле К5, которое своим контактом К5.1 становится на самоблокировку, а контактом К5.2 включает вторую катушку реле К4. Контакты К4.1 и К4.2 размыкаются, и электромагнит VA золотника 18 обесточивается. Пружина 22 переключает золотник 18 в положение, при котором трубопроводы 17 и 5 соединяются трубопроводом 3 со сливом, а нагнетательный трубопровод от насоса соединяется с трубопроводом 14, по которому масло поступает в цилиндр отвода ударника и перемещает поршень 10 влево. Происходит подъем ударника под действием сжатого воздуха и одновременно отвод ударника.

При перемещении поршня влево начинается отсос масла из полости золотника 2 по трубопроводу 4, что приводит к переключению золотника 2 под действием пружины 1 в исходное положение.

После поворота ударника в исходное (отведенное) положение открывается сливное отверстие цилиндра отвода ударника и масло от насоса поступает на слив. Гидравлическая система готова к следующему циклу.

Для приведения электрической системы управления в исходное положение необходимо опустить ладонные кнопки S6 и S7 (обесточиваются катушки К7 и К5). Положение ударника по высоте регулируется с помощью реверсивного электродвигателя М2. Нажатием на кнопку S4 (S5) включается цепь питания реле К2(К3), замыкаются контакты К2.2(К3.2), включающие электродвигатель. Блокирующие контакты К3.1 и К2.1 предотвращают одновременное срабатывание реле К2 и К3.

В случае аварии и по окончании работы пресс отключается кнопкой S2. Герметизированные контакты реле К4 и К5 обеспечивают требуемую долговечность системы.

Защита электрической системы от коротких замыканий и перегрузок осуществляется предохранителями F1-F4 и автоматическим выключателем S1.

Электропривод на швейных машинах

Требования к приводу швейных машин.

На швейных машинах привод работает в необычно тяжёлых условиях, когда в течение часа

производится до 1000 пусков машины. Найдётся ли иная технологическая машина с подобным режимом работы? А скорость главного вала до 9000 мин –1 ! Многие передачи не выдерживают таких скоростей! Отсюда и специальные требования к электроприводу:

1. Быстроходность – способность обеспечить на главном валу машины( 5 – 6) 10 3 мин –1 .

2. Должен выдержать до 1000 включений-выключений в час.

3. Плавный пуск, плавная регулировка скорости машины.

4. Управление привода – педальное с предельной силой нажима на неё – 60 Н стоя, и сидя до 150 Н.

5. Иметь высокий К,П,Д,( в цехе становится излишне жарко от множества тесно расположенных шв-х машин), удобно расположен ( не мешать свободно сидеть оператору), безопасен в работе как в электрическом, так и в механическом отношении.

6. Стоимость э/привода не должна быть предметом особого обсуждения. ( В автоматизируемых электроприводах имеется свыше 30 микросхем, а его стоимость эквивалентна стоимости головки машины !)

Фрикционный привод швейных машин.

В швейном производстве применяются в основном три типа электроприводов в зависимости от вида и назначения технологической машины:

· Контакторный – когда поворотом выключателя или нажатием педали машина сразу набирает паспортную скорость. Не требуется плавности пуска и регулирования скорости. Привод применяется на тихоходных, простых по устройству машинах редко выключаемых (перемотка ткани, её раздублирование и т. д.)

· Фрикционный – когда между простым асинхронным электродвигателем и клиноремённой передачей устанавливается управляемая от педали фрикционная муфта, обеспечивающая плавный пуск и плавное регулирование скорости на ходу машины. Сегодня имеет самое широкое распространение как на универсальных, так и на специальных машинах.

Читайте также:  Марки моющих пылесосов список лучших

· Автоматизированный электропривод. Позволяет программировать работу машины, выполнять автоматически основные и вспомогательные операции технологического цикла. Дорог и сложен, невысокий К.П.Д. Есть тенденция замены его простым хорошо регулируемым по скорости двигателем постоянного тока.

Автоматизированный электропривод к швейной машине.

Такой привод необходим для швейных машин, имеющих устройство для остановки иглы в заданном положении, для автоматического подъёма прижимной лапки, для выполнения строчки с переменной скоростью работы, для автоматического выполнения закрепки на концах строчки. Сюда относят раннюю модель двухскоростного привода Quick-Stop, многоскоростного Vario –Stop. Известны попытки изготовить привода этого типа в гг. Винница, Тула, Иваново, Ковров, но в производстве чаще встречается Quick Rotan, Германия. На принципиальной схеме автоматизированнонго электропривода,

рис.4, обозначены

1. Обычный асинхронный электродвигатель.

3. Неподвижная электромагнитная муфта, гонная,

4,5 Диски в форме кольца на пластинчатой пружине,

6. Неподвижная фрикционная часть тормозной муфты,

7. Тормозная неподвижная электромагнитная муфта,

8. Гибкая пластина, с помощью которой диск крепится на валу

9. Клиноремённая передача,

11. Швейная машина,

12. Тахогенератор, вырабатывает в постоянном электромагнитном поле напряжение, пропорциональное скорости вращения вала,

13. 14. Датчики положения главного вала, подающие команду на останов иглы соответственно вверху или внизу,

15, 16. Усилители, управляемые сигналом тахогенератора; изменяют напряжение на магнитах 3 и 7, вызывая или гон, или торможение.

3. Описание работы автоматизированного электропривода

Включаем двигатель 1.

Если муфта 3 под током, то диск 4 притягивается к ней, изгибая пластины крепления диска. При этом фрикционная часть диска коснётся ведущего диска 2. В зависимости от силы магнитного поля в паре 2-4 возможно проскальзывание или полное сцепление. В последнем случае скорость ремённой передачи будет наибольшей. Таким же образом взаимодействуют диски 5,6 под влиянием муфты 7. При увеличении тока в обмотке 7 возрастает торможение вплоть до останова. На промежуточных скоростях машины имеет место скольжение в обеих электромагнтных муфтах. Нагрев при этом не выходит за рамки допуска, т.к. этот режим кратковременен.

Как регулируются обороты машины? Нажав педаль вперёд до отказа, выполним пуск, так как гонная муфта получила максимальный ток, а тормозная – обесточена. Для снижения скорости слегка отпустим педаль, тогда гонная муфта снизит интенсивность магнитного поля и момент трения в паре 3-4 упадёт, начнётся проскальзавание, скорость машины снизится. При дальнейшем отпускании педали муфта 3 обесточится, а тормозная 7 – включится. Произойдёт останов машины с предварительным вводом машины на доводочную скорость, при достижении которой начинают срабатывать средства автоматики машины. Тахогенератор используется, как датчик скорости. При отклонении её от заданной (задаётся скорость педалью пуска), тахогенератор через усилители 15 и 16 изменяет напряжение на муфтах.

Если требуется остановить машину с иглой в нижнем положении, необходимо педаль пуска отпустить полностью. Тогда тормозная муфта снизит скорость машины до доводочной, а затем датчик положения 14 прикажет ей остановить машину. Если нажать педаль пяткой назад, то при останове игла будет вверху. При этом нужное положение главного вала контролируется датчиком 13. Таким образом, датчики 13 и 14 включает в работу педаль пуска. Усилители 15 и16 получают сигнал, представляющий собой разность напряжений задаваемого и выдаваемого тахогенератором.

ПРИМЕР: при пуске из покоя у тахогенератора U=0, а на задатчике – педали – Umax . Тогда подаваемое напряжение усилителям будет U max – 0 = Umax.

Описание электрооборудования производственного механизма обычно делится на три части: общие сведения об электрооборудовании, описание действия электрической схемы управления и перечисление всех блокировок и защиты.

Указывается полный перечень, назначение и технические данные электрических машин, электромагнитов, электронагревательных устройств и других силовых элементов, возможные режимы работы электрооборудования и применяемые напряжения для питания элементов электрооборудования. Приводится общая характеристика аппаратуры управления, защиты и сигнализации, объединенной по назначению и местам размещения.

Описание действия электрической схемы производится в последовательности, соответствующей порядку работы элементов электрооборудования для рабочих, а также наладочных режимов. При перечислении блокировок и защиты указывается их назначение и приводится изложения действия всех блокировок и защиты электрооборудования, а также вопросов электробезопасности.

К каждой отдельной принципиальной схеме прилагается перечень электрооборудования, в который заносят краткие технические данные и позиционное обозначение всех элементов и устройств, используемых в схеме. Кроме того, на схеме обычно приводятся диаграммы работы переключателей управления всех видов и назначений, циклограммы срабатывания и схематическое расположение путевых выключателей и командоаппаратов.

Список используемой литературы

Электрооборудование промышленных предприятий и установок, Е.Н. Земин, 1981 год

Электрооборудование промышленных предприятий и установок, Н.А. Гурин, 1990 год

Электрооборудование, С.Ф. Григорьев, 1990 год

Машины, машины-автоматы и автоматические линии легкой промышленности, А.А. Анасивае, 1983 год

Справочник, промышленное швейное оборудование, Кузьмичев В.Е.

Принцип работы гидравлического пресса

Работа гидравлического пресса основана на принципе гидравлического рычага.

На рисунке показана схема простейшего гидравлического пресса, состоящего из поршней большего и малого диаметров, установленных в сообщающихся цилиндрах, под поршнями находится жидкость. На поршень малого диаметра площадью S1 оказывается усилие F1, определим усилие F2, которое сможет преодолеть поршень площадью S2.

Давление под поршнем 1 можно вычислить по формуле:

Давление под поршнем 2 будет определяться зависимостью:

Согласно закону Паскаля давление, приложенное к жидкости передается всем точкам этой жидкости одинаково во всех направлениях.

Сила на втором поршне будет увеличена пропорционально соотношению площадей поршней. Чем больше площадь второго поршня, и чем меньше площадь первого тем больший коэффициент усиления можно получить на гидравлическом рычаге.

Величина перемещения поршня 2 зависит от объема жидкости, вытесненного поршнем 1. Определим величину перемещения второго поршня l2, при перемещении поршня 1 на расстояние l1.

Так как первый поршень меньше второго, то расстояние на которое переместится второй поршень будет меньше расстояния, на который переместится первый поршень.

Читайте также:  Какой цвет провода фазы в электричестве

Получается, что представленная конструкция позволила значительно увеличить усилие, но при этом произошло снижение величины перемещения. Каким образом можно увеличить величину хода поршня 2, не увеличивая конструкцию?

Добавив в конструкцию два обратных клапана, и бак с дополнительным объемом рабой жидкости, мы сможем увеличить величину перемещения поршня 2, увеличивая число циклов перемещения поршня 1. Для возврата поршня 2 в исходное состояние добавим задвижку или распределитель, позволяющий при необходимости вытеснить жидкость из под поршня 2 обратно в бак.

Рассмотрим как работает гидравлический пресс в данном случае.

Во время перемещения поршня вниз под действием давления жидкости клапан 1 прижимается к седлу – закрывается, а клапан 2 открывается, жидкость поступает под поршень 2, заставляя его перемещаться и при необходимости преодолевать усилие нагрузки.

По достижении крайнего нижнего положения поршень начинает перемещаться вверх, увеличивая объем под поршнем, в результате создавшегося разряжения клапан 1 откроется, а клапан 2 закроется жидкость из бака будет поступать под поршень 1. После достижения крайнего положения поршень начнет движение вниз вытесняя рабочую жидкость, цикл повториться.

Таким образом увеличивая число циклов, можно достигнуть необходимой величины перемещения поршня 2 с увеличенным, за счет разницы площадей, усилием.

Представленную конструкцию можно назвать простейшим гидравлическим прессом, поршень 1 совместно с обратными клапанами 1 и 2 является поршневым насосом, поршень 2, установленный в цилиндрической камере – гидроцилиндром одностороннего действия, управление потоками жидкости осуществляется с помощью распределителя или задвижек.

Устройство гидравлического пресса

В реальных прессах используются объемные насосы различных типов, от насоса по трубопроводам жидкость поступает к одному или нескольким гидроцилиндрам. Параметры потока – давление, расход могут регулироваться с помощью предохранительных и редукционных клапанов, дросселей, регуляторов расхода.

Рассмотрим, принципиальную схему реального гидравлического пресса.

Жидкость от насоса через фильтр поступает на вход трехпозиционного распеределителя. В нейтральном положении золотник жидкость через распределитель отправляется на слив. При переключении распределителя жидкость направляется в поршневую или штоковую полость гидроцилиндра установленного на гидравлическом прессе.

Во время подачи жидкости в поршневую полость осуществляется рабочий ход – прессование. Во время подачи жидкости в штоковую полость – обратный ход.

Усилие прессования определяется как произведение площади поршня на давление в полости гидроцилиндра:

Максимальное давление в системе определяется настройкой предохранительного клапана и контролируется по манометру, установленному в напорной линии.

Гидравлическая схема пресса показана на рисунке.

Классификация гидравлических прессов

Наиболее часто используют классификации прессов по следующим признакам.

По расположению рабочих цилиндров :

  • горизонтальные
  • вертикальные
  • с верхним цилиндром
  • с нижним цилиндром
  • угловые (с вертикальным и горизонтальным цилиндрами)
  • По количеству рабочих цилиндров:

    • с одним цилиндром
    • с двумя и более цилиндрами

    По типу привода:

    • с ручным приводом
    • с приводом от двигателя внутреннего сгорания
    • с приводом от электродвигателя

    Характеристики гидравлических прессов

    Гидравлический привод позволяет реализовать различные усилия и скорости перемещения выходного звена пресса. Скорость перемещения выходного звена может варьироваться в диапазоне от 0,1 мм/с до 300 мм/с.

    Усилие гидравлического пресса

    Одним из ключевых преимуществ гидравлических прессов является простота регулирования силы и возможность реализации больших усилий.

    Силу, развиваемую гидравлическим прессом можно определить как произведение давления в полости гидроцилиндра на площадь поршня:

    В зависимости от конструкции гидравлические прессы способны развивать усилие от нескольких тонн, до 70 000 тс (тонн силы).

    Достоинства гидравлических прессов

    • Возможность получения огромных усилий
    • Большой коэффициент усиления
    • Простота регулирования и контроля усилия
    • Простота регулирования скорости выходного звена
    • Высокая надежность
    • Кинематическим звеном гидравлического пресса является жидкость, движение который осуществляется по трубопроводам, в том числе и гибким, это позволяет передавать энергию даже к подвижным элементам конструкции.

    Недостатки гидравлических прессов

    • Меньший, по сравнению с механическими прессами, КПД
    • Относительно высокая стоимость комплектующих и обслуживания
    • Возможность попадания масла в зону прессования

    Применение гидравлических прессов

    Гидравлические прессы применяют:

    • при штамповке деталей из пластмасс, резины, стали, алюминия и других металлов
    • для запрессовки металлических деталей
    • для прессования угольных блоков, угольно графитовых электродов
    • для прессования древесной стружки при производстве фанеры, древесных плит

    Гидравлические прессы широко используют в металлургии для для горячей и холодной штамповки, выдавливания, прошивки, гибки, правки, резки металла.

    В пищевой промышленности из-за недопустимости попадания частиц масла в продукты используют пневматические прессы.

    Принцип действия и конструкции современных листогибочных прессов

    Малая энергоёмкость процесса гибки листового металла во многих случаях позволяет рекомендовать изготовление подобного оборудования своими руками, используя исключительно ручной привод. Но это категорически неприемлемо в случае гибки толстолистового металла, гибки габаритных изделий, а также для получения малых (до 20 — 25°) углов гиба. Во всех вышеперечисленных случаях следует использовать гидравлический листогибочный пресс.

    Выбор гидравлического или механического привода

    Механические прессы составляют основу парка современного оборудования для пластической деформации сталей и сплавов. Однако применение такого типа машин для целей гибки листового металла в большинстве случаев нецелесообразно. Причина – в явлении пружинения, которое обязательно сопутствует всем гибочным операциям, выполняющимся в холодном состоянии.

    Пружинение представляет собой самопроизвольное перемещение оси гнутого металла заготовки после снятия с неё рабочего усилия. Основная причина пружинения – остаточная упругость смежных слоёв материала, которая присутствует даже в высокопластичных сталях или алюминиевых сплавах. Обычно угол пружинения составляет 7…10°, однако у некоторых цветных сплавов (например, АМг) он может доходить до 12…15°, заметно искажая профиль согнутой под механическим прессом детали.

    Кинематической особенностью механического листогибочного пресса вертикального исполнения является то, что в своей крайней нижней точке ползун такого пресса практически не находится более 0,5…1 с. Следовательно, рабочее усилие процесса, позволяющее преодолеть силы упругого восстановления формы изделия, воздействуют на неё крайне малое время. В результате многие изделия, деформируемые в холодном состоянии на кривошипных листогибах, приходится в дальнейшем подвергать калибровочной правке «на удар», либо догибать изделия вручную, что снижает качество сборки узлов, и повышает трудоёмкость.

    Гидравлический листогиб, привод которого производится от специальных силовых гидроцилиндров, позволяет удерживать материал заготовки под давлением столько, сколько этого потребуют физико-механические характеристики материала. Например, листогибочный пресс с ЧПУ позволит запрограммировать режим калибровки предварительно, ещё до начала процесса гибки. Современный гидравлический листогибочный пресс обладает, как правило, двумя силовыми цилиндрами, которые размещаются в боковых стойках рамы. Машины модульного типа часто оснащаются несколькими рабочими цилиндрами.

    Положительной особенностью промышленных листогибов с гидроприводом считается также и то, что они никогда не вызывают заклинивание привода при перегрузках, что неизбежно в случае использования кривошипно-шатунного рабочего механизма.

    Уступая,” таким образом, в производительности, гидравлический листогиб превосходит кривошипный листогибочный пресс по факторам надёжности и по качеству конечной продукции.

    Виды и классификация листогибочного оборудования с гидроприводом

    Согласно отраслевой нормали КН-1-01 отечественное оборудование для гибки маркируется буквой И, после которой следует условное обозначение типа и рабочего усилия оборудования. Например, марка И2730Ф указывает на то, что данная кузнечно-штамповочная машина представляет собой листогибочный пресс с ЧПУ (буква Ф в конце маркировки), а максимальное рабочее усилие (последние две цифры) составляет 1000 кН.

    Читайте также:  Что такое адаптер к мотоблоку

    Кроме того, промышленные листогибы классифицируются:

    1. По типу станины: выпускаются оборудование с открытой станиной С-образного типа, и с закрытой станиной рамного типа.
    2. По наличию либо отсутствию средств автоматизации процесса. Высокофункциональный листогибочный пресс с ЧПУ, несмотря на свою более высокую стоимость, значительно выгоднее обычного приводного листогиба, поскольку позволяет оперативно программировать себя на деформирование изделий с различной формой, чем существенно снижаются непроизводительные простои прессов.
    3. По конструктивному исполнению силовых гидроцилиндров листогибочный пресс может быть с нижним расположением цилиндров (с тянущими цилиндрами), и с верхним (толкающие цилиндры). С точки зрения распределения усилий во время деформирования, более высокой долговечностью отличаются прессы с верхним расположением силовых органов, поскольку в этом случае преобладают сжимающие напряжения, допустимый уровень которых для сталей всегда выше, чем сжимающих.

    Следует отметить, что изготовление листогибочных прессов (независимо от типа привода) своими руками практически невозможно, поскольку требует очень высокого оснащения станочной базой и квалификации исполнителей. Вместе с тем, изготовление пуансонов и матриц своими руками вполне возможно: инструмент для гибки имеет довольно простую конфигурацию, а, кроме того, производится под конкретные потребности производства.

    Особенности гибки сталей и сплавов на промышленных листогибочных машинах

    Ведущей фирмой в производстве данного вида оборудования является транснациональная корпорация Amada, прессы которой занимают до 70% профильного сегмента рынка.

    Отличительной особенностью листогибочных машин от Amada являются:

    • Трёхкоординатное программирование параметров гибки по оперативно переналаживаемым упорам;
    • Наличие автоматических компенсаторов упругого пружинения станины пресса под нагрузкой;
    • Сегментированный инструмент, который – отдельно по пуансонам и матрицам – может быть заказан одновременно с приобретением оборудования;
    • Корректировка месторасположения задних упоров в зависимости от физико-механических характеристик металла исходной заготовки.

    В последнее время распространение получают также машины для гибки от турецкой фирмы «Durmazlar». В частности, выпускаемый ею листогибочный пресс durma часто имеет модульное исполнение – тандем или даже трио – что позволяет применять такие листогибочные прессы для деформирования толстолистовых заготовок значительных габаритных размеров. Турецкие листогибы при вполне достойном качестве обладают значительно меньшей стоимостью.

    Изготовление гнутой продукции на листогибочных прессах заключается в следующем:

    1. Подлежащая гибке заготовка своими руками устанавливается в матрицу, и позиционируется там по передним и/или задним упорам, чем однозначно устанавливается размер полки готовой детали.
    2. Подвижный инструмент – пуансон с необходимым радиусом гибки – устанавливается в инструментальный блок и зажимается в нём с использованием визуальной информации от графического дисплея.
    3. В блоке ЧПУ набираются данные о требуемой величине деформирующего хода ползуна, на котором установлен гибочный инструмент.
    4. С учётом возможного расхождения пластических свойств деформируемого материала (это возможно даже в рамках одной партии) производится пробный гиб заготовки в матрице. При этом устанавливается максимально возможное время нахождения заготовки под нагрузкой.
    5. Готовое изделие (при ходе ползуна пресса вверх) извлекается из матрицы и контролируется своими руками при помощи шаблона. При необходимости инструмент подналаживается, при этом может изменяться как расположение пуансона, так и матрицы.

    Надлежащее качество гибки с применением приводных листогибочных прессов может быть обеспечено двумя способами: свободной или адаптивной гибкой. Первая реализуется преимущественно на прессах, не оснащённых ЧПУ. При свободной гибке инструмент регулируется индивидуально, поэтому многое зависит от опыта и квалификации наладчика. Кроме того, индивидуальная регулировка матрицы и/или пуансона своими руками занимает много времени (особенно при малых партиях производства продукции). Таким образом, инструмент, изготовленный своими руками для листогиба без системы ЧПУ, впоследствии потребует индивидуальной регулировки каждого пуансона и/или матрицы.

    Адаптивная гибка возможна лишь на прессах с ЧПУ. В этом случае инструмент качественно позиционируется по следующим осям:

    • Оси продольного перемещения ползуна по направляющим станины пресса. Это определяет скорость, с которой движется инструмент (вверх, либо вниз), причём прессы с ЧПУ обладают, как правило, двумя скоростями – холостого хода сближения пуансона и матрицы с заготовкой (ускоренной), и деформирующего хода, где гибочный инструмент выполняет непосредственную гибку. Современные листогибочные прессы обладают возможностью раздельной наладки каждой из направляющих ползуна (в некоторых случаях это может допускаться преднамеренно);
    • Оси компенсации от вероятного прогиба осей ползуна на стадии рабочего хода. Это бывает необходимым при гибке высокоуглеродистых сталей и некоторых сплавов, характеризующихся повышенной упругостью. В результате возникают реактивные нагрузки на станину, в результате которых инструмент может быть перекошен, а оси пуансона и матрицы могут сместиться в сторону от первоначального положения;

    Компенсация прогиба обеспечивается клиновой системой установки инструментального блока, при которой каждый пуансон и матрица могут адаптивно перемещаться при самопроизвольном изменении своего первоначального положения. В результате инструмент полностью сохраняет свою точность.

    Сложность листогибочных прессов с ЧПУ, таким образом, полностью оправдывает себя, поскольку предотвращает все возможные искажения изделия при процессе его гибки.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    >

    Ссылка на основную публикацию
    Adblock detector