Явление гистерезиса петля гистерезиса

Гистерезис происходит от греческого слова, означающего запаздывание или отставание. С данным понятием связана такая физическая величина, как петля гистерезиса, определяющая одну из характеристик тела. Она определенным образом связана также и с физическими величинами, характеризующими внешние условия, такие как магнитное поле.

Общие понятия гистерезиса

Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.

Подобная зависимость хорошо просматривается на примере человеческого тела. Чтобы изменить его состояние потребуется какой-то отрезок времени на релаксацию. Поэтому реакция тела будет всегда отставать от причин, вызвавших измененное состояние. Данное отставание значительно уменьшается, если изменение внешних условий также будет заме для ться. Тем не менее, в некоторых случаях может не произойти уменьшения отставаний. В результате, возникает неоднозначная зависимость величин, известная как гистерезисная, а само явление называется гистерезисом.

Эта физическая величина может встречаться в самых разных веществах и процессах, однако чаще всего рассматриваются понятия диэлектрического, магнитного и упругого гистерезиса. Магнитный гистерезис как правило появляется в магнитных веществах, например, таких как ферромагнетики. Характерной особенностью этих материалов является самопроизвольная или спонтанная неоднородная намагниченность, наглядно демонстрирующая это физическое явление.

Механизм возникновения петли гистерезиса

Сам по себе гистерезис представляет собой кривую, отображающую измененный магнитный момент вещества, на которое воздействует периодически изменяющаяся напряженность поля. Когда магнитное поле воздействует на ферромагнетики, то изменение их магнитного момента наступает не сразу, а с определенной задержкой.

В каждом ферромагнетике изначально присутствует самопроизвольная намагниченность. Сам материал включает в свой состав отдельные фрагменты, каждый из которых обладает собственным магнитным моментом. При направленности этих моментов в разные стороны, значение суммарного момента оказывается равным нулю в результате взаимной компенсации.

Если на ферромагнетик оказать воздействие магнитным полем, то все моменты, присутствующие в отдельных фрагментах (доменах) будут развернуты вдоль внешнего поля. В итоге, в материале образуется некоторый общий момент, направленный в одну сторону. Если внешнее действие поля прекращается, то домены не все окажутся в изначальном положении. Для этого потребуется воздействие достаточно сильного магнитного поля, предназначенного для разворота доменов. Такому развороту создают препятствия наличие примесей и неоднородность материала. Поэтому материал имеет некоторую остаточную намагниченность, даже при отключенном внешнем поле.

Для снятия остаточного магнитного момента, необходимо приложение действия поля в противоположном направлении. Напряженность поля должна иметь величину, достаточную, чтобы выполнить полное размагничивание материала. Такая величина известна как коэрцитивная сила. Дальнейшее увеличение магнитного поля приведет к перемагничиванию ферромагнетика в противоположную сторону.

Когда напряженность поля достигает определенного значения, материал становится насыщенным, то есть магнитный момент больше не увеличивается. При снятии поля вновь наблюдается наличие остаточного момента, который снова можно убрать. Дальнейшее увеличение поля приводит к попаданию в точку насыщения с противоположным значением.

Таким образом, на графике появляется петля гистерезиса, начало которой приходится на нулевые значение поля и момента. В дальнейшем, первое же намагничивание выводит начало петли гистерезиса из нуля и весь процесс начинает происходить по графику замкнутой петли.

ГИСТЕРЕЗИС — (от греч. hysteresis отставание) запаздывание изменения физической величины, характеризующей состояние вещества (намагниченности М ферромагнетика, поляризации P сегнетоэлектрика и т. п.), от изменения другой физической величины, определяющей… … Большой Энциклопедический словарь

гистерезис — сдвиг, отставание Словарь русских синонимов. гистерезис сущ., кол во синонимов: 2 • отставание (10) • … Словарь синонимов

ГИСТЕРЕЗИС — ГИСТЕРЕЗИС, явление, характерное для упругих тел; заключается в том, что ДЕФОРМАЦИЯ тела при увеличении НАПРЯЖЕНИЯ меньше, чем при его уменьшении из за задержки эффекта деформации. Когда механическое напряжение удалено полностью, остается… … Научно-технический энциклопедический словарь

Читайте также:  Техник кипиа должностная инструкция

Гистерезис — (от греческого hysteresis отставание, запаздывание) 1) Г. в аэродинамике неоднозначность структуры поля течения и, следовательно, аэродинамических характеристик обтекаемого тела при одних и тех же значениях кинематических параметров, но при… … Энциклопедия техники

ГИСТЕРЕЗИС — (от греч. hysteresis отставание, запаздывание), явление, к рое состоит в том, что физ. величина, характеризующая состояние тела (напр., намагниченность), неоднозначно зависит от физ. величины, характеризующей внеш. условия (напр., магн. поля). Г … Физическая энциклопедия

ГИСТЕРЕЗИС — (hysteresis) Зависимость равновесного (equilibrium) состояния системы от того, как осуществляется приспособление (корректировка) в процессе динамики. Подобный подход подрывает традиционное различие между сравнительной статикой и динамикой.… … Экономический словарь

Гистерезис — в экономике предположение о том, что современный уровень экономической переменной зависит от ее прошлого уровня. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

ГИСТЕРЕЗИС — (от греч. hysteros более поздний), название, даваемое ряду явлений, объединяемых тем общим свойством, что определенная величина является зависимой от предшествующего состояния исследуемой системы. Г. магнитный. Если поместить железный стержень… … Большая медицинская энциклопедия

гистерезис — Запаздывание изменения физ. величины, хар ризующей состояние вещ ва, по отношению к изменению внешних условий (др. физ. величины); изображается в виде петли гистерезиса. [http://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN hysteresis … Справочник технического переводчика

Гистерезис — – (от греч. hysteresis – запаздывание) – различная реакция физ. тела на некоторые внешние воздействия в зависимости от того, подвергалось ли это тело ранее тем же воздействиям или подвергается им впервые. Г. объясняется… … Энциклопедия терминов, определений и пояснений строительных материалов

В данной статье мы рассмотрим явление под названием магнитный гистерезис, которое связано со свойствами намагничивания материала, благодаря которому он сначала намагничивается, а затем размагничивается. Рассмотрим кривые намагничивания, сохраняемость, а так же магнитную петлю гистерезиса.

Описание явления магнитного гистерезиса

Мы знаем, что магнитный поток, создаваемый электромагнитной катушкой, представляет собой величину магнитного поля или силовых линий, создаваемых в данной области, и что его чаще называют «плотностью потока», обозначенным символ B с единицей измерения Тесла, Т.

Мы также знаем из предыдущих уроков, что магнитная сила электромагнита зависит от числа витков катушки, тока, протекающего через катушку, или от типа используемого материала сердечника, и если мы увеличим либо ток, либо число оказывается, мы можем увеличить напряженность магнитного поля H.

Ранее относительная проницаемость, символ µ r, определялась как отношение абсолютной проницаемости µ и проницаемости свободного пространства µ o(вакуум), и это задавалось как постоянная величина. Однако взаимосвязь между плотностью потока B и напряженностью магнитного поля H может быть определена тем фактом, что относительная проницаемость µ r не является постоянной величиной, а функцией интенсивности магнитного поля, что дает плотность магнитного потока как: B = M H .

Тогда плотность магнитного потока в материале будет увеличена в большей степени в результате его относительной проницаемости для материала по сравнению с плотностью магнитного потока в вакууме, µ o H, а для катушки с воздушной сердцевиной это соотношение определяется как:

Таким образом, для ферромагнитных материалов отношение плотности потока к напряженности поля ( B / H ) не является постоянным, а изменяется в зависимости от плотности потока. Тем не менее, для катушек с воздушной сердцевиной или любой сердцевины с немагнитной средой, такой как дерево или пластмасса, это отношение можно считать постоянной величиной, и эта постоянная известна как μ o , проницаемость свободного пространства ( μ o = 4.π.10 -7 ч / м ).

Построив значения плотности потока ( B ) против напряженности поля, ( Н ) мы можем произвести набор кривых , называемых Кривые намагничивания, кривые магнитного гистерезиса или более обычно BH кривые для каждого типа основного используемого материала.

Читайте также:  Uc3842bn схема включения в сварочном инверторе

Намагниченность или кривая B-H

Набор кривых намагничивания выше, представляет пример взаимосвязи между B и H для сердечников из мягкого железа и стали, но каждый тип материала сердечника будет иметь свой собственный набор кривых магнитного гистерезиса. Вы можете заметить, что плотность потока увеличивается пропорционально напряженности поля до тех пор, пока она не достигнет определенного значения, если оно больше не может становиться почти равным и постоянным, поскольку напряженность поля продолжает увеличиваться.

Это связано с тем, что существует ограничение на количество плотности потока, которое может генерироваться ядром, поскольку все домены в железе идеально выровнены. Любое дальнейшее увеличение не будет влиять на значение M , и точка на графике, где плотность потока достигает своего предела, называется магнитным насыщением, также известным как насыщение сердечника, и в нашем простом примере выше точки насыщения стальной кривой начинается примерно с 3000 ампер-витков на метр.

Насыщение происходит потому, что, как мы помним из предыдущей статьи по магнетизму, который включал теорию Вебера, случайное расположение структуры молекулы в материале ядра изменяется, когда крошечные молекулярные магниты в материале становятся «выстроенными».

По мере увеличения напряженности магнитного поля ( H ) эти молекулярные магниты становятся все более и более выровненными, пока они не достигнут идеального выравнивания, создавая максимальную плотность потока, и любое увеличение напряженности магнитного поля из-за увеличения электрического тока, протекающего через катушку, будет иметь мало или вообще не будет иметь эффекта.

Сохраняемость (способность сохранять остаточный магнетизм)

Предположим, что у нас есть электромагнитная катушка с высокой напряженностью поля из-за тока, протекающего через нее, и что материал ферромагнитного сердечника достиг своей точки насыщения, максимальной плотности потока. Если мы теперь откроем переключатель и удалим ток намагничивания, протекающий через катушку, мы ожидаем, что магнитное поле вокруг катушки исчезнет, ​​когда магнитный поток уменьшится до нуля.

Однако магнитный поток не исчезает полностью, поскольку материал электромагнитного сердечника все еще сохраняет часть своего магнетизма, даже когда ток прекращает течь в катушке. Эта способность к катушке, чтобы сохранить часть своего магнетизма внутри сердечника после процесса намагничивания остановилось называются сохраняемость или остаточной намагниченности, в то время как величина плотности потока все еще остается в ядре, называется остаточным магнетизмом B R .

Причиной этого является то, что некоторые из крошечных молекулярных магнитов не возвращаются к совершенно случайному образцу и все же указывают в направлении исходного поля намагничивания, давая им своего рода «память». Некоторые ферромагнитные материалы обладают высокой удельной удерживаемостью (магнитной твердостью), что делает их превосходными для изготовления постоянных магнитов.

В то время как другие ферромагнитные материалы имеют низкую способность удерживать (магнитно-мягкие), что делает их идеальными для использования в электромагнитах, соленоидах или реле. Один из способов уменьшить эту остаточную плотность потока до нуля — изменить направление тока, протекающего через катушку, путем изменения значения H, напряженности магнитного поля, отрицательной. Этот эффект называется коэрцитивной силой H C .

Если этот обратный ток увеличивается еще больше, то плотность потока будет также увеличиваться в обратном направлении, пока ферромагнитный сердечник не достигнет насыщения снова, но в обратном направлении от предыдущего. Снижая ток намагничивания I снова до нуля создаст аналогичную величину остаточного магнетизма, но в обратном направлении.

Затем путем постоянного изменения направления тока намагничивания через катушку с положительного направления на отрицательное направление, как в случае с источником переменного тока, можно создать петлю магнитного гистерезиса ферромагнитного сердечника.

Магнитная петля гистерезиса

Магнитная петля гистерезиса выше, показывает поведение ферромагнитного сердечника графически в виде соотношения между B и H является нелинейным. Начиная с немагнитного сердечника, и B, и H будут в нуле, точка 0 на кривой намагничивания.

Если ток намагничивания I увеличивается в положительном направлении до некоторого значения, напряженность магнитного поля H линейно увеличивается с I,и плотность потока B также будет увеличиваться, как показано кривой из точки 0 в точку a, когда она движется к насыщению.

Читайте также:  Плотность фторопласта ф 4

Теперь, если ток намагничивания в катушке уменьшается до нуля, магнитное поле, циркулирующее вокруг сердечника, также уменьшается до нуля. Однако магнитный поток катушек не достигнет нуля из-за остаточного магнетизма, присутствующего в сердечнике, и это показано на кривой от точки а к точке b .

Чтобы уменьшить плотность потока в точке b до нуля, необходимо обратить ток, протекающий через катушку. Сила намагничивания, которая должна применяться для обнуления остаточной плотности потока, называется «Коэрцитивной силой». Эта коэрцитивная сила меняет магнитное поле, перестраивая молекулярные магниты, пока ядро ​​не станет немагнитным в точке с .

Увеличение этого обратного тока вызывает намагничивание сердечника в противоположном направлении, и дальнейшее увеличение этого тока намагничивания приведет к тому, что сердечник достигнет своей точки насыщения, но в противоположном направлении, точки d на кривой.

Эта точка симметрична точке b . Если ток намагничивания снова уменьшится до нуля, остаточный намагниченность, присутствующая в сердечнике, будет равна предыдущему значению, но в точке е будет обратной .

Снова изменение направления тока намагничивания, протекающего через катушку на этот раз в положительном направлении, приведет к тому, что магнитный поток достигнет нуля, точка f на кривой, и, как и прежде, дальнейшее увеличение тока намагничивания в положительном направлении приведет к насыщению сердечника в точке а .

Затем кривая B-H следует по пути a-b-c-d-e-f-a, когда ток намагничивания, протекающий через катушку, чередуется между положительным и отрицательным значением, таким как цикл переменного напряжения. Этот путь называется магнитной петлей гистерезиса.

Эффект магнитного гистерезиса показывает, что процесс намагничивания ферромагнитного сердечника и, следовательно, плотность потока зависят от того, на какую часть кривой намагничивается ферромагнитный сердечник, поскольку это зависит от прошлых цепей, придающих сердечнику форму «памяти». Тогда ферромагнитные материалы имеют память, потому что они остаются намагниченными после того, как внешнее магнитное поле было удалено.

Однако мягкие ферромагнитные материалы, такие как железная или кремниевая сталь, имеют очень узкие петли магнитного гистерезиса, что приводит к очень небольшим количествам остаточного магнетизма, что делает их идеальными для использования в реле, соленоидах и трансформаторах, поскольку они могут легко намагничиваться и размагничиваться.

Поскольку для преодоления этого остаточного магнетизма необходимо применять коэрцитивную силу, необходимо выполнить работу по замыканию петли гистерезиса, чтобы используемая энергия рассеивалась в виде тепла в магнитном материале. Это тепло известно как потеря гистерезиса, величина потери зависит от значения материала коэрцитивной силы.

Добавляя добавки к металлическому железу, такие как кремний, можно получить материалы с очень малой коэрцитивной силой, которые имеют очень узкую петлю гистерезиса. Материалы с узкими петлями гистерезиса легко намагничиваются и размагничиваются и известны как магнитомягкие материалы.

Магнитные петли гистерезиса для мягких и твердых материалов

Магнитный гистерезис приводит к рассеиванию потраченной энергии в виде тепла, причем энергия теряется пропорционально площади петли магнитного гистерезиса. Потери гистерезиса всегда будут проблемой в трансформаторах переменного тока, где ток постоянно меняет направление, и, таким образом, магнитные полюсы в сердечнике будут вызывать потери, потому что они постоянно меняют направление.

Вращающиеся катушки в машинах постоянного тока также будут нести гистерезисные потери, поскольку они попеременно проходят севернее южных магнитных полюсов. Как указывалось ранее, форма петли гистерезиса зависит от природы используемого железа или стали, и в случае железа, которое подвергается массивным изменениям магнетизма, например, сердечники трансформатора, важно, чтобы петля гистерезиса B-H была как можно меньше.

В следующей статье об электромагнетизме мы рассмотрим закон электромагнитной индукции Фарадея и увидим, что, перемещая проводной проводник в стационарном магнитном поле, можно вызвать электрический ток в проводнике, образующий простой генератор.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Ссылка на основную публикацию
Adblock detector