Формула периода колебаний груза на пружине

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

.

В этом соотношении – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

.

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы , прикрепленный к пружине жесткости , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Рисунок 2.2.1.

Круговая частота свободных колебаний груза на пружине находится из второго закона Ньютона:

откуда

Частота называется собственной частотой колебательной системы.

Период гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину , равную

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты и периода колебаний справедливы и в этом случае.

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела и координатой : ускорение является второй производной координаты тела по времени :

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

или

(*)

где

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

m cos .

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний или период . Такие параметры колебательного процесса, как амплитуда m и начальная фаза , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Если, например, груз был смещен из положения равновесия на расстояние и затем в момент времени отпущен без начальной скорости, то m = , .

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость то

Читайте также:  Бесплатные чертежи для плазменной резки

Таким образом, амплитуда m свободных колебаний и его начальная фаза определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол возникает момент сил упругой деформации кручения:

.

Это соотношение выражает закон Гука для деформации кручения. Величина аналогична жесткости пружины . Второй закон Ньютона для вращательного движения диска записывается в виде (см. §1.23)

где – момент инерции диска относительно оси, проходящий через центр масс, – угловое ускорение.

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

1. цЕУФЛПУФШ РТХЦЙООПЗП НБСФОЙЛБ 8000 о/Н. юЕНХ ТБЧЕО РЕТЙПД Й ЮБУФПФБ ЕЗП ЛПМЕВБОЙК?

2. дЧБ ПДЙОБЛПЧЩИ РТХЦЙООЩИ НБСФОЙЛБ ЛПМЕВМАФУС У БНРМЙФХДБНЙ – 3 Й 6 УН. лБЛ ТБЪМЙЮБАФУС РЕТЙПДЩ ЙИ ЛПМЕВБОЙК?

3. рТХЦЙООЩК НБСФОЙЛ УПЧЕТЫЙМ 15 ЛПМЕВБОЙК ЪБ ПДОХ НЙОХФХ. лБЛПЧЩ РЕТЙПД Й ЮБУФПФБ ЛПМЕВБОЙК?

4. лППТДЙОБФЩ РТХЦЙООПЗП НБСФОЙЛБ ЙЪНЕОСАФУС РП ЪБЛПОХ

юЕНХ ТБЧОЩ БНРМЙФХДБ, РЕТЙПД Й ЮБУФПФБ ЛПМЕВБОЙК. ч ЖПТНХМЕ ЧУЕ ЧЕМЙЮЙОЩ ЧЩТБЦЕОЩ Ч УЙУФЕНЕ уй.

лТБФЛБС ФЕПТЙС:

рТХЦЙООЩК НБСФОЙЛ – ЬФП ЗТХЪ, ЛПМЕВМАЭЙКУС ОБ РТХЦЙОЕ. пО УПЧЕТЭБЕФ ЧПЪЧТБФОП-РПУФХРБФЕМШОПЕ ДЧЙЦЕОЙЕ. рТХЦЙООЩК НБСФОЙЛ РПДЮЙОСЕФУС ЪБЛПОБН ДЧЙЦЕОЙС, РП ЛПФПТЩН НПЦОП ПРТЕДЕМЙФШ РЕТЙПД ЕЗП ЛПМЕВБОЙК, ЪОБС НБУУХ ЗТХЪБ Й ЦЕУФЛПУФШ РТХЦЙОЩ. рЕТЙПД ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ ОЕ ЪБЧЙУЙФ ПФ НЕУФБ ЕЗП ТБУРПМПЦЕОЙС Й БНРМЙФХДЩ ЛПМЕВБОЙК.

жПТНХМЩ ДМС ТЕЫЕОЙС :

бМЗПТЙФН ТЕЫЕОЙС ФЙРПЧПК ЪБДБЮЙ:

1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ, ЙЪПВТБЦБЕН ЕЗП ЗТБЖЙЮЕУЛЙ. оБ ТЙУХОЛЕ ПВПЪОБЮБЕН ОЕПВИПДЙНЩЕ ДБООЩЕ: УЙМЩ, ДЕКУФЧХАЭЙЕ ОБ НБСФОЙЛ, ОБРТБЧМЕОЙЕ ЕЗП ДЧЙЦЕОЙС Й ДТХЗЙЕ.
2. ъБРЙУЩЧБЕН ПУОПЧОХА ЖПТНХМХ ДМС ПРТЕДЕМЕОЙС РЕТЙПДБ ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ Й ДТХЗЙЕ ОЕПВИПДЙНЩЕ ЖПТНХМЩ ЛПМЕВБФЕМШОПЗП ДЧЙЦЕОЙС. пРТЕДЕМСЕН, ЛБЛЙЕ ЧЕМЙЮЙОЩ ОБДП ОБКФЙ ЙЪ ДТХЗЙИ НЕИБОЙЮЕУЛЙИ УППФОПЫЕОЙК, ЪБРЙУЩЧБЕН ЙИ.
3. тЕЫБЕН РПМХЮЕООЩЕ ХТБЧОЕОЙС Ч ПВЭЕН ЧЙДЕ.
4. рПДУФБЧМСЕН ДБООЩЕ, ЧЩЮЙУМСЕН. рЕТЕД РПДУФБОПЧЛПК РЕТЕЧПДЙН ЧУЕ ДБООЩЕ Ч ЕДЙОХА УЙУФЕНХ.
5. ъБРЙУЩЧБЕН ПФЧЕФ.

рТЙНЕТЩ ТЕЫЕОЙС:

ъБДБЮБ 1.

нБУУБ ЗТХЪБ РТХЦЙООПЗП НБСФОЙЛБ 0,5 ЛЗ, ЦЕУФЛПУФШ РТХЦЙОЩ 8000 о/Н. юЕНХ ТБЧЕО РЕТЙПД Й ЮБУФПФБ ЕЗП ЛПМЕВБОЙК?

1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ, ЙЪПВТБЦБЕН ЕЗП ЗТБЖЙЮЕУЛЙ.

2. ъБРЙУЩЧБЕН ПУОПЧОХА ЖПТНХМХ ДМС ПРТЕДЕМЕОЙС РЕТЙПДБ ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ Й УППФОПЫЕОЙЕ НЕЦДХ РЕТЙПДПН Й ЮБУФПФПК ЛПМЕВБОЙК.

3. тЕЫБЕН РПМХЮЕООЩЕ ХТБЧОЕОЙС Ч ПВЭЕН ЧЙДЕ. жПТНХМЩ УТБЪХ ДБАФ ПВЭЕЕ ТЕЫЕОЙЕ.

Читайте также:  Техника безопасности на сварочном участке

4. рПДУФБЧМСЕН ДБООЩЕ, ЧЩЮЙУМСЕН.

5. пФЧЕФ: юБУФПФБ ЛПМЕВБОЙК РТЙНЕТОП 20 ЗЕТГ, ЙИ РЕТЙПД – 0,05 УЕЛХОДЩ.

ъБДБЮБ 2.

дЧБ ПДЙОБЛПЧЩИ РТХЦЙООЩИ НБСФОЙЛБ ЛПМЕВМАФУС У БНРМЙФХДБНЙ – 3 Й 6 УН. лБЛ ТБЪМЙЮБАФУС РЕТЙПДЩ ЙИ ЛПМЕВБОЙК?

1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ, ЙЪПВТБЦБЕН ЕЗП ЗТБЖЙЮЕУЛЙ.

2. ъБРЙУЩЧБЕН ПУОПЧОХА ЖПТНХМХ ДМС ПРТЕДЕМЕОЙС РЕТЙПДБ ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ.

3. тЕЫБЕН РПМХЮЕООЩЕ ХТБЧОЕОЙС Ч ПВЭЕН ЧЙДЕ.

4. рПДУФБЧМСЕН ДБООЩЕ, ЧЩЮЙУМСЕН.

5. пФЧЕФ: рЕТЙПД ЛПМЕВБОЙК РТХЦЙООПЗП НБСФОЙЛБ ОЕ ЪБЧЙУЙФ ПФ БНРМЙФХДЩ.

ъБДБЮБ 3.

рТХЦЙООЩК НБСФОЙЛ УПЧЕТЫЙМ 15 ЛПМЕВБОЙК ЪБ ПДОХ НЙОХФХ. лБЛПЧЩ РЕТЙПД Й ЮБУФПФБ ЛПМЕВБОЙК?

1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ, ЙЪПВТБЦБЕН ЕЗП ЗТБЖЙЮЕУЛЙ.

2. юБУФПФБ ЛПМЕВБОЙК – ЬФП ЙИ ЛПМЙЮЕУФЧП Ч ЕДЙОЙГХ ЧТЕНЕОЙ. еДЙОЙГБ ЧТЕНЕОЙ Ч УЙУФЕНЕ уй – УЕЛХОДБ. ъОБЮЙФ, ОБДП РТПУФП ОБКФЙ ЛПМЙЮЕУФЧП ЛПМЕВБОЙК Ч УЕЛХОДХ. дМС ЬФПЗП ЛПМЙЮЕУФЧП ЛПМЕВБОЙК Ч НЙОХФХ ОБДП ТБЪДЕМЙФШ ОБ 60, ФБЛ ЛБЛ Ч НЙОХФЕ 60 УЕЛХОД.

рЕТЙПД – ЧЕМЙЮЙОБ, ПВТБФОБС ЮБУФПФЕ.

3. тЕЫБЕН РПМХЮЕООЩЕ ХТБЧОЕОЙС Ч ПВЭЕН ЧЙДЕ. жПТНХМЩ УТБЪХ ДБАФ ПВЭЕЕ ТЕЫЕОЙЕ.

4. рПДУФБЧМСЕН ДБООЩЕ, ЧЩЮЙУМСЕН.

5. пФЧЕФ: РЕТЙПД ЛПМЕВБОЙК ТБЧЕО 4 УЕЛХОДБН, ЙИ ЮБУФПФХ – 0,25 ЗЕТГБ.

ъБДБЮБ 4.

лППТДЙОБФЩ РТХЦЙООПЗП НБСФОЙЛБ ЙЪНЕОСАФУС РП ЪБЛПОХ

юЕНХ ТБЧОЩ БНРМЙФХДБ, РЕТЙПД Й ЮБУФПФБ ЛПМЕВБОЙК. ч ЖПТНХМЕ ЧУЕ ЧЕМЙЮЙОЩ ЧЩТБЦЕОЩ Ч УЙУФЕНЕ уй.

1. лТБФЛП ЪБРЙУЩЧБЕН ХУМПЧЙЕ, ЙЪПВТБЦБЕН ЕЗП ЗТБЖЙЮЕУЛЙ.

2. ъБРЙУЩЧБЕН ПВЭЕЕ ХТБЧОЕОЙЕ ЗБТНПОЙЮЕУЛПЗП ЛПМЕВБОЙС. уТБЧОЙЧБЕН ЪБДБООПЕ ХТБЧОЕОЙЕ ДЧЙЦЕОЙС НБСФОЙЛБ У ПВЭЙН ХТБЧОЕОЙЕН.

3. йЪ УТБЧОЕОЙС РПМХЮБЕН:

пФУАДБ МЕЗЛП ЧЩЮЙУМСЕФУС ЮБУФПФБ Й РЕТЙПД ЛПМЕВБОЙК.

4. рПДУФБЧМСЕН ДБООЩЕ, ЧЩЮЙУМСЕН

5. пФЧЕФ: бНРМЙФХДБ ЛПМЕВБОЙК ТБЧОБ 0,5 НЕФТБ, РЕТЙПД – ЮЕФЩТЕН УЕЛХОДБН, ЮБУФПФБ – 0,25 зГ.

Свободные колебания могут совершаться под действием внутренних сил только после выведения из положения равновесия всей системы.

Чтобы колебания совершались согласно гармоническому закону, нужно, чтобы сила, возвращающая тело в положение равновесия, была пропорциональна смещению тела из равновесного положения и направлена в сторону, противоположную смещению.

F ( t ) = m a ( t ) = – m ω 2 x ( t ) .

Соотношение говорит о том, что ω является частотой гармонического колебания. Данное свойство характерно для упругой силы в пределах применимости закона Гука:

Силы любой природы, которые удовлетворяют условию, называют квазиупругими.

То есть груз с массой m , прикрепляющийся к пружине жесткости k с неподвижным концом, изображенным на рисунке 2 . 2 . 1 , составляют систему, способную совершать гармонические свободные колебания при отсутствии силы трения.

Груз, располагаемый на пружине, называют линейным гармоническим осциллятором.

Рисунок 2 . 2 . 1 . Колебания груза на пружине. Трения нет.

Круговая частота

Нахождение круговой частоты ω 0 производится с помощью применения формулы второго закона Ньютона:

Читайте также:  Рулевое на мотоблок своими руками видео

m a = – k x = m ω 0 2 x .

Частоту ω 0 называют собственной частотой колебательной системы.

Определение периода гармонических колебаний груза на пружине Т находится из формулы:

T = 2 π ω 0 = 2 π m k .

Горизонтальное расположение системы пружина-груз, сила тяжести компенсируется силой реакции опоры. При подвешивании груза на пружину направление силы тяжести идет по линии движения груза. Положение равновесия растянутой пружины равняется:

x 0 = m g k , тогда как колебания выполняются около нового равновесного состояния. Формулы собственной частоты ω 0 и периода колебаний Т в вышеуказанных выражениях являются справедливыми.

При имеющейся математической связи между ускорением тела а и координатой х поведение колебательной системы характеризуется строгим описанием: ускорение является второй производной координаты тела х по времени t :

Описание второго закона Ньютона с грузом на пружине запишется как:

m a – m x = – k x , или x ¨ + ω 0 2 x = 0 , где свободная частота ω 0 2 = k m .

Если физические системы зависят от формулы x ¨ + ω 0 2 x = 0 , тогда они в состоянии совершать свободные колебательные гармонические движения с различной амплитудой. Это возможно, так как применяется x = x m cos ( ω t + φ 0 ) .

Свободные колебания

Уравнение вида x ¨ + ω 0 2 x = 0 получило название уравнения свободных колебаний. Их физические свойства могут определять только собственную частоту колебаний ω 0 или период Т .

Амплитуда x m и начальная фаза φ 0 находят при помощи способа, который вывел их из состояния равновесия начального момента времени.

При наличии смещенного груза из положения равновесия на расстояние ∆ l и моменте времени, равном t = 0 , производится его опускание без начальной скорости. Тогда x m = ∆ l , φ 0 = 0 . Если груз находился в положении равновесия, то при толчке передается начальная скорость ± υ 0 , отсюда x m = m k υ 0 , φ 0 = ± π 2 .

Амплитуда x m с начальной фазой φ 0 определяются наличием начальных условий.

Рисунок 2 . 2 . 2 . Модель свободных колебаний груза на пружине.

Механические колебательные системы отличаются наличием сил упругих деформаций в каждой из них. Рисунок 2 . 2 . 2 показывает угловой аналог гармонического осциллятора, совершающий крутильные колебания. Диск располагается горизонтально и висит на упругой нити, закрепленной в его центре масс. Если его повернуть на угол θ , тогда возникает момент силы упругой деформации кручения M у п р :

Данное выражение не соответствует закону Гука для деформации кручения. Величина x аналогична k жесткости пружины. Запись второго закона Ньютона для вращательного движения диска принимает вид

I ε = M у п р = – x θ или I θ ¨ = – x θ , где моментом инерции обозначается I = I C , а ε – угловое ускорение.

Аналогично с формулой пружинного маятника:

ω 0 = x I , T = 2 π I x .

Применение крутильного маятника замечено в механических часах. Он получил название балансира, в котором создание момента упругих сил производится при помощи спиралевидной пружины.

Рисунок 2 . 2 . 3 . Крутильный маятник.

Ссылка на основную публикацию
Adblock
detector