Формула для определения предела прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1] , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

Прокатное производство включает изготовление различных марок конструкционных сталей, каждая из которых обладает индивидуальными механическими характеристиками. В процессе эксплуатации стальные сооружения подвергаются в разной степени нагрузкам на изгиб и сжатие, растяжение и удары и только от механических свойств металлов зависит степень их прочность и стойкость. Чтобы сделать правильные расчеты, применяется специальная расчетная формула.

Виды деформации стали

Тяжелым конструкциям необходимо придать дополнительную прочность и надежность, в связи с чем к свойствам используемых для изготовления металлов предъявляются особые требования.

Читайте также:  Управление затвором полевого транзистора

При расчете размеров конструкции важную роль играет снижение массы сооружения без потери его несущих способностей. Используемые для изготовления металлических сооружений конструкционные металлы должны иметь достаточно высокие показатели прочности и хорошую пластичность.

Сопротивляемость деформации и разрушению под воздействием внешней нагрузки во многом зависит от того, какими свойствами наделен металл. В производстве стали деформация встречается в двух видах: упругой и пластической.

Описываются они разными характеристиками. Сегодня для испытания образцов металлов применяют несколько методик, которые определяют значения пропорциональности, упругости, текучести и других важных характеристик.

Современное определение стали звучит как твердый сплав железа с углеродом, процентным содержанием которого и обусловлены основные свойства стали. Чем выше содержание углерода, тем металл прочнее и тверже, но ниже вязкость и пластичность. Поэтому так важно правильно рассчитать соотношение этих показателей для производства тех или иных изделий из стали. Маркировать стали принято каждую группу по-разному.

Конструкционная углеродистая сталь маркируется буквами Ст и цифровыми обозначениями от 1 до 9, а также двумя буквами в зависимости от способа раскисления металла (ст.3кп):

  1. кп — кипящая;
  2. пс — полуспокойная;
  3. сп — спокойная.

Качественная — цифрами двузначными: 05,08,10,… 45…, что указывает на среднее количество углерода в составе стали.

Предел текучести стали

Граничный предел пропорциональности стали определяет напряжение, при котором действует закон Гука, согласно с которым деформация, возникшая в упругом теле, пропорциональна приложенной к нему силе. Если напряжение меняется, этот закон теряет актуальность.

Немаловажной физической величиной, участвующей в формуле при расчете прочности конструкции, является предел текучести металла. Когда металлом достигается физический предел, даже самое малое поднятие напряжения способно удлинить образец, который начинает как бы течь, откуда и произошло его обозначение. В связи с этим граница текучести стали показывает критическое напряжение, когда материал деформируется уже без увеличения нагрузки.

Единица, в которой производится измерение предела текучести будет называться Паскаль (Па) либо МегаПаскаль (МПа). Преодолевший этот предел образец получает необратимые изменения — разные степени деформации, нарушение структурного строения кристаллической решетки, различные пластические преобразования.

Если при увеличении растягивающего значения силы пройдена площадка текучести, деформация металла усиливается. На диаграмме это представляется в виде горизонтально расположенной прямой, на которой может измеряться напряжение, максимально получаемое после остановки усиления нагрузки. Так называемый предел текучести Ст 3 составляет 2450 кг/кв.см.

Этот показатель отличается у различных марок стали и может меняться от применения разных температурных режимов и типов термообработки. Чтобы иметь возможность точно определить предел текучести стали таблица используется, где в зависимости от марок сталей приведены величины пределов текучести. Как пример, по данным таблицы сталь 20 предел текучести имеет 250 МПа, а сталь 45 — 360.

При проведении испытаний некоторые металлы на диаграмме имеют слабо выраженную площадку тягучести либо она вовсе отсутствует, поэтому к ним применяется условный предел тягучести.

Материалы, на которые распространяется применение условного предела текучести, это в основном представители высокоуглеродистых и легированных сталей, дюралюминий, чугун, бронза и многие другие.

Предел упругости

Весьма важной составляющей механического состояния металлов является предел упругости стали. С его помощью устанавливается предельно допустимый уровень нагрузок при эксплуатации металла, когда им испытываются незначительные деформации в допустимых значениях.

Конструкционные материалы в себе должны сочетать высокие пределы тягучести, при которых они смогут выдерживать серьезные нагрузки, и иметь достаточную упругость, которая обеспечит необходимую жесткость изготовляемой конструкции. Сам модуль упругости обладает одинаковой величиной при растяжении и сжатии, но иметь совершенно отличные пределы упругости — так что одинаково жесткие конструкции диапазоны упругости могут иметь абсолютно разные.

Читайте также:  Как можно использовать компрессор от старого холодильника

При этом металл в упругом состоянии макропластических деформаций не получает, хотя в его отдельных микроскопических объемах локальные деформации вполне могут иметь место. Благодаря им происходят неупругие явления, серьезно воздействующие на поведение отдельных металлов в состоянии упругости.

При этом нагрузки статические приводят к возникновению гистерезисных явлений, релаксации и упругого последействия, в то время как нагрузки динамические провоцируют появление внутреннего трения.

В процессе релаксации происходит несанкционированное снижение напряжения. Это приводит к проявлению остаточной деформации, когда активная нагрузка уже не действует. При наступлении внутреннего трения происходит потеря энергии. Это вызывает необратимые последствия, которые характеризуются декрементом затухания и коэффициентом внутреннего трения.

Такие металлы активно гасят вибрацию и сдерживают звук, например, серый чугун, или свободно распространяют колебания, как это делает колокольная бронза. С повышением температурного воздействия упругость металлов снижается.

Предел прочности

Предел прочности стали, который возникает после прохождения его границы текучести и позволяет образцу вновь начать сопротивление к растяжению, отображается на графике линией, которая поднимается уже более полого.

Наступает фаза временного сопротивления действующей постоянной нагрузке. При применении максимума напряжения в точке предела прочности возникает участок, где площадь сечения уменьшается, а шейка значительно сужается.

При этом испытываемый образец разрывается в наиболее узком месте, его напряжение снижается и значение величины силы уменьшается. Предел прочности для ст. 3 составляет 4000−5000 кГ/кв.см.

Модуль упругости первого рода (Е) – физическая константа материала, определяемая путем эксперимента и являющаяся коэффициентом пропорциональности между напряжениями и деформациями:

σ = εЕ.

Модуль упругости можно определять измерением образца тензометром (расчетный способ) или графическим способом по начальному участку диаграммы растяжения.

Расчетный способ. Нагружают образец равными ступенями до нагрузки, соответствующей напряжению, равному 70-80% от предполагаемого σпц. Величина ступени нагружения должна составлять 5-10% от предполагаемого σпц. По результатам испытаний определяют среднюю величину приращения удлинения образца ∆lcp на ступень нагружения ∆Р.

Графический способ. Записывают диаграмму нагружения образца в координатах "нагрузка (ордината) – деформация (абсцисса)". ∆Р и ∆lcp определяют по диаграмме на участке от нагрузки Р0 до нагрузки, соответствующей напряжению равному 70-80% от предполагаемого σпц.

Модуль упругости вычисляют по формуле

МПа

Стандарты регламентируют также определение относительного равномерного удлинения δР, конечной расчетной длины образца lK, относительного удлинения образца после разрыва δ, относительного сужения ψ.

Предел пропорциональности σпц – наибольшее напряжение, до которого материал следует закону Гука, можно определять расчетным или графическим способами.

Расчетным способомопределяют или с помощью зеркального прибора при последовательном нагружении образца. Нагружение ведут сначала крупными ступенями, а затем при напряжении 0,65-0,8 от определяемого σпц – малыми ступенями. Рпц определяют при установленном отклонении деформации от закона пропорциональности, фиксируемом показаниями тензометра.

Графическим способомРпц определяют по машинной диаграмме растяжения.

От начала координат (рис.2.7) проводят прямую, совпадающую с начальным линейным участком диаграммы растяжения.

На произвольном уровне нагрузки проводят прямую АВ, параллельную оси абсцисс, и на этой прямой откладывают отрезок kn, равный половине отрезка mk. Через точку n и начала координат проводят прямую On и параллельно ей проводят касательную CD к диаграмме растяжения. Точка касания определяет искомую нагрузку Рпц.

Читайте также:  Электрические щетки для болгарки

Рис.2.7. Графические способы определения предела пропорциональности по диаграмме растяжения

Предел пропорциональности вычисляют по формуле

, МПа

Предел упругости σ 0,05 – наибольшее напряжение, до которого материал не получает остаточных деформаций. Так как пластические деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, величина предела упругости (как и σпц) зависит от требований точности, которые налагаются на производимые измерения.

Расчетный способ. Образец нагружают до величины в два раза больше начальной Р0, и после выдержки в течение 5-7 с разгружают до Р0. Затем образец нагружают до величины, соответствующей 70-80% от предполагаемого σ0,05. Дальнейшее нагружение проводят ступенями с выдержкой на каждой ступени 5-7 с и последующей разгрузкой до Р0 с измерением остаточного удлинения. Испытания прекращают, если остаточное удлинение превысит установленный допуск. По результатам испытаний определяют нагрузку Р0,05

Графический способ, σ0,05 определяют по начальному участку диаграммы "нагрузка-деформация" (рис.2.8). Удлинения определяют на участке, равном базе измерителя деформации.

Для определения Р0,05 вычисляют соответствующую величину остаточного удлинения с учетом базы измерителя деформации. Найденную величину увеличивают пропорционально масштабу диаграммы по оси деформаций; отрезок полученной длины 0Е откладывают по оси абсцисс вправо от начала координат 0. Из точки Е проводят прямую ЕР, параллельную прямой 0А. Точка пересечения Р с диаграммой растяжения определяют нагрузку Р0,05.

Предел упругости вычисляет по формуле

.

Рис.2.8. Определение предела упругости

Предел текучести физическийσт, верхний предел текучести σтв и нижний предел текучести σтн определяют по диаграмме растяжения.

Скорость относительной деформации на площадке текучести устанавливают в пределах 0,00025- 0,0025 с -1 . Если такая скорость на площадке текучести не может быть установлена, то до начала текучести устанавливают скорость нагружения от 1 до 30 МПа/с.

Допускается определять нагрузку Рт по явно выраженной остановке стрелки силоизмерителя машины, обусловленной удлинением образца без заметного увеличения нагрузки.

Пределы текучести вычисляют по формуле

.

В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести (или явно выраженный начальный переходный эффект), за предел текучести принимается условно величина напряжения, при котором остаточная деформация σост = 0,002 или 0,2%.

Предел текучести условныйσ0,2 можно определить расчетным или графическим способом.

Расчетный способ.σ0,2 определяют аналогично расчетному способу определения предела упругости σ 0,05.

Графический способ. σ0,2– определяют аналогично графическому способу определения σ0,05, по точке пересечения с кривой растяжения прямой KL, параллельной начальному участку кривой и отстоящей от него по горизонтали на расстоянии 0К=0,2(1о/100) в соответствии с принятым допуском (рис.2.9).

Рис. 2.9. Определение предела текучести σ0,2 по диаграмме растяжения

Условный предел текучести можно определять графически по диаграмме, записанной на машине в масштабе, если масштаб ее диаграммного аппарата по оси деформаций не менее 50:1.

При определении σ0,2 скорость нагружения должна быть от от 1 до 30 МПа/с. Предел текучести условный вычисляют по формуле

.

Временное сопротивление σв (предел прочности). Для определения σв образец растягивают под действием плавно возрастающей нагрузки до разрушения. Наибольшая нагрузка, предшествующая разрушению образца, Рmах соответствует временному сопротивлению.

Временное сопротивление вычисляется по формуле

.

Для пластичных материалов характеристикой сопротивления разрушению гладкого образца при растяжении служит истинное сопротивление разрушению – истинный предел прочности Sk

,

где Fk– площадь сечения в месте разрушения; Pk-усилие в момент разрушения;

Характер разрушения определяют по виду излома образца (рис.2.10).

Ссылка на основную публикацию