Форма графита в ковком чугуне

Феррит (твёрдый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твёрдый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твёрдый раствор углерода в α-железе с объемно-центрированной тетрагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Ко́вкий чугу́н — условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита с образованием графита, то есть процесс графитизации, и поэтому такой отжиг называют графитизирующим.

Ковкий чугун, как и серый, состоит из сталистой основы и содержит углерод в виде графита, однако графитовые включения в ковком чугуне иные, чем в обычном сером чугуне. Разница в том, что включения графита в ковком чугуне расположены в форме хлопьев, которые получаются при отжиге, и изолированы друг от друга, в результате чего металлическая основа менее разобщена, и чугун обладает некоторой вязкостью и пластичностью. Из-за своей хлопьевидной формы и способа получения (отжиг) графит в ковком чугуне часто называют углеродом отжига.

По составу белый чугун, подвергающийся отжигу на ковкий чугун, является доэвтектическим и имеет структуру ледебурит + цементит (вторичный) + перлит. Для получения структуры феррит + углерод отжига в процессе отжига должен быть разложен цементит ледебурита, вторичный цементит и цементит эвтектоидный, то есть входящий в перлит. Разложение цементита ледебурита и цементита вторичного (частично) происходит на первой стадии графитизации, которую проводят при температуре выше критической (950—1000 °С); разложение эвтектоидного цементита происходит на второй стадии графитизации, которую проводят путём выдержки при температуре ниже критической (740—720 °C), или при медленном охлаждении в интервале критических температур (760—720 °C).

Белый чугун. Такое название он получил по виду излома, который имеет матово-белый цвет. Фазовый состав белого чугуна (при нормальной температуре) цементит и феррит. Следовательно, в белом чугуне весь углерод находится в форме цементита, степень графитизации равна нулю. Белый чугун обладает высокой твердостью и (Хрупкостью, практически не поддается обработке режущим инструментом.

Структура белых чугунов, а также и условия их образования были рассмотрены ранее (гл. VI, п. 4).

Серый чугун. Такое название чугун получил по виду излома, который имеет серый цвет. В структуре серого чугуна имеется графит, количество, формы и размеры которого изменяются в широких пределах. Таким образом, в сером чугуне имеется графит, а в белом его нет.

В микроструктуре чугуна следует различать металлическую основу и графитные включения.

По строению металлической основы чугун разделяют на:

перлитный чугун (рис. 164, а). Структура его состоит из перлита с включениями графита (на рис. 164, а графит в виде прожилок; типично для серого чугуна). Как известно, перлит содержит , следовательно, это количество углерода в сером перлитном чугуне находится в связанном состоянии (т. е. в виде ), остальное коли чество находится в свободном виде, т. е. в форме графита;

феррито-перлитный чугун (рис. 164, б). Структура этого чугуна состоит из феррита перлит и включения веретенообразного графита. В этом чугуне количество связанного углерода меньше

ферритный чугун (рис. 164, в). В этом чугуне металлической основой является феррит, и весь углерод, имеющийся в сплаве, присутствует в форме графита (на фотографии в виде хлопьев углерода отжига).

Из рассмотрения структур указанных трех видов чугуна можно заключить, что их металлическая основа похожа на структуру эвтектоидной стали, доэвтектоидной стали и железа.

Рис. 164. Микроструктура серого чугуна: а — перлитного, Х200; б — феррито-перлитного, ; в — ферритного,

Следовательно, по структуре серые чугуны отличаются от стали только тем, что в чугунах имеются графитные включения, предопределяющие специфические свойства чугунов.

Графит в чугунах может быть в четырех основных формах:

пластинчатый графит. В обычном сером чугуне графит образуется в виде лепестков; такой графит называется пластинчатым. На рис. 165, а показана структура обычного ферритного чугуна с прожилками графита; пространственный вид таких графитных включений показан на рис. 166, а (видно пересечение пластинчатых включений плоскостью шлифа);

вермикулярный графит — в виде червеобразных прожилок (рис. 165, г);

шаровидный графит. В современных так называемых высокопрочных чугунах, выплавленных с присадкой небольшого количества магния (или церия), графит приобретает форму шара.

На рис. показана микроструктура серого чугуна с шаровидным графитом, а на рис. фотография графитного включения;

хлопьевидный графит. Если при отливке получить белый чугун, а затем, используя неустойчивость цементита, с помощью отжига разложить его, то образующийся графит приобретает компактную, почти равноосную, но не округлую форму.

Рис. 165. (см. скан) Формы графита в чугуне: а — пластинчатой (обычный серый чугун), X 100: б – шаровидной (высокопрочный чугун), X 200: в — хлопьевидной (ковкий чугун), — вермикулярной,

Такой графит называется хлопьевидным или углеродом отжига. Микроструктура чугуна с хлопьевидным графитом показана на рис. 165, в. В практике чугун с хлопьевидным графитом называют ковким чугуном.

Таким образом, чугун с пластинчатым графитом называют обычным серым чугуном. с червеобразным графитом — серым

(кликните для просмотра скана)

вермикулярным; чугун с шаровидным графитом — высокопрочным чугуном и чугун с хлопьевидным графитом — ковким чугуном.

На схемах структур (рис. 167) обобщается описанная выше классификация чугуна по строению металлической основы и форме графита.

В промышленности широко применяются чугуны, в которых весь углерод или часть его находится в виде графита: серые, высокопрочные, ковкие чугуны. Наличие графита в них обеспечивает пониженную твердость, хорошую обрабатываемость резанием и высокие антифрикционные свойства благодаря низкому коэффициенту трения. Вместе с тем включения графита, нарушающие сплошность металлической основы сплава, вызывают снижение прочности и пластичности, особенно, при растягивающих нагрузках. Образование графита в чугунах происходит в соответствии с диаграммой состояния железо-графит (рис.2.9).

Рис. 2.9. Диаграмма состояния железо-графит

Выделение графита может происходить непосредственно из жидкости по линии С ¢ D ¢ , из аустенита по линии EСF или вследствие распада предварительно образовавшегося цементита. Процесс образования графита называется графитизацией.

Графитизации способствует повышенное содержание углерода и кремния (C + Si = 5-7 %), а также медленное охлаждение. Различие структур серых, высокопрочных и ковких чугунов заключается в форме графитных включений. В сером чугуне графит имеет пластинчатую форму (в разрезе в виде прожилок), в высокопрочном чугуне – шаровидную форму, в ковком – хлопьевидную форму (рис.2.10).

Происхождение графита по микроструктуре (доэвтектический, эвтектический, заэвтектический) различить невозможно. Поэтому принято классифицировать данные чугуны по структуре металлической основы в зависимости от полноты графитизации.

Если графитизация в твердом состоянии прошла полностью (А® Ф +Г), то металлическая основа чугуна – ферритная. При неполной графитизации частично образуется цементит ( А® П+Г), металлическая основа – перлитная. Возможен промежуточный вариант, когда аустенит частично распадается на феррит и цементит. В этом случае основа ферритно-перлитная (А® Ф+П+Г). Огромное влияние на свойства оказывает форма графитных включений.

Рис.2.10. Основные формы графитных включений в чугуне:

а – пластинчатая (серый чугун); б – шаровидная (высокопрочный чугун);

в – хлопьевидная (ковкий чугун)

Пластинчатая форма графитных включений особенно сильно снижает пластичность и предел прочности чугуна при растяжении; по мере округления графитных включений (хлопьевидная, шаровидная формы) отрицательное влияние их уменьшается.

Степень разупрочняющего и охрупчивающего действия графита определяется конфигурацией его включений в чугуне (табл.2.2).

Зависимость пластичности чугуна от формы графита

Ковкий чугун
Фазы железоуглеродистых сплавов
Структуры железоуглеродистых сплавов
Читайте также:  Фрезер своими руками видео чертежи
Форма графита Название чугуна НВ, кгс/мм² δ,%
Пластинчатый Серый 190-275 0,1 – 0,5
Хлопьевидный Ковкий 100-269 3 – 12
Шаровидный Высокопрочный 140-360 2 –22

Структура серых, ковких и высокопрочных чугунов состоит из металлической основы и графита; свойства чугуна будут зависеть от свойств металлической основы, количества, размеров и формы графитных включений.

Серый чугун – чугун, в котором углерод находится в виде графита преимущественно в форме изогнутых пластин или разветвленных розеток с пластинчатыми лепестками.Он обладает низкой вязкостью и пластичностью и не выдерживает динамических нагрузок.

Серые чугуны содержат помимо углерода (3,2-3,8 % С) и железа специально вводимые элементы, способствующие графитизации (выделению углерода в виде графита), основным из которых является кремний (1-5 % Si). Степень графитизации возрастает при увеличении содержания углерода и наличия меди и никеля, которые попадают из руды. Сера, марганец и хром являются элементами, затрудняющими графитизацию (отбеливающими). Отливки из серого чугуна получают в земляных или металлических формах. Структура отливок (количество графита и основы) зависит от скорости охлаждения, определяемой как методом литья, так и в большей степени толщиной стенки отливки (рис. 2.11).

Рис. 2.11. Структурная диаграмма чугунов: а – влияние углерода и кремния на структуру чугуна; б –влияние скорости охлаждения ( толщины стенки) и суммы С + Si на структуру чугуна; I – белые чугуны; II – V – серые чугуны

Включения графита в серых чугунах можно рассматривать как трещины и даже как пустоты, так как графит обладает очень низкими механическими свойствами. Механические свойства понижаются тем больше, чем крупнее графитные включения и чем больше их в единице объема.

Серые чугуны маркируются буквами СЧ и числом соответствующий пределу прочности при растяжении (например, СЧ 20; σВ =20кгс/мм 2 ).

Читайте также:  Как определить вес тела без весов

По структуре металлической основы серые чугуны делятся на три вида: перлитный (структура перлит + графит), феррито-перлитный (структура феррит + перлит + графит), ферритный (структура феррит + графит) (рис.2.12).

Механические свойства серого чугуна (табл.2.3) зависят от свойств металлической основы, которая по строению и свойствам близка стали, а также от формы и размера графитовых включений.

Графит имеет очень низкую прочность, поэтому полости, занятые им, действуют как надрезы и трещины в металлической основе чугуна и значительно снижают его прочность и пластичность. Относительное удлинение серых чугунов при растяжении не превышает 0,5 %. Чем больше графита и крупнее его включения, тем ниже механические свойства. Измельчение графитовых включений достигается путем модифицирования.

а б в

Рис. 2.12. Микроструктура серого чугуна: а – ферритный, б – феррито-перлитный, в – перлитный; (x500), травление 4 %-ным спиртовым раствором азотной кислоты)

Серые чугуны используются для деталей, не испытывающих ударных нагрузок и работающих на сжатие и изгиб. Они поглощают вибрацию. К основным характеристикам серого чугуна относится предел прочности при растяжении, определяющий его марку (СЧ20, предел прочности σВ =20 кгс/мм 2 ).

Механические свойства и химический состав серых чугунов

Марка Чугуна σв, МПа, не менее Твёрдость HB, (кгс/мм 2 ), не более С, % Si, % Mn, % P S
Не более ,%
СЧ10 3,5-3.7 2,2-2,6 0,5-0,8 0,3 0,15
СЧ15 3,5-3,7 2,0-2,4 0,5-0,8 0,2 0,15
СЧ20 3,3-3,5 1,4-2,4 0,7-1,0 0,2 0,15
СЧ25 3,2-3,4 1,4-2,4 1,7-1,0 0,2 0,15
СЧ30 3,0-3,2 1,3-1,9 0,7-1,0 0,2 0,12
СЧ35 2,9-3,0 1,2-1,5 0,7-1,1 0,2 0,12

Из серого чугуна изготовляют три марки антифрикционных чугунов (АСЧ1, АСЧ2, АСЧ3). Антифрикционные свойства и назначение (табл. 2.6) определяются соотношением перлита и феррита в основе, количеством и формой графита.

Высокопрочный чугун – чугун, в котором графит имеет шаровидную форму (рис. 2.10,б). Его получают путем модифицирования в ковше жидкого чугуна, не отличающегося по составу от серого (3,0-3,6 % С; 2,0-3,1 % Si), церием или магнием (0,03-0,07 %) или магниевой лигатурой (20 % Mg + 80 % Ni).

По структуре высокопрочный чугун разделяют на ферритный и перлитный (рис. 2.13).

Рис.2.13. Структура высокопрочного чугуна: а – ферритный, б – перлитный (x100;травление 4 % -ным спиртовым раствором азотной кислоты)

Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу (по сравнению с пластинчатой). Прочностные свойства этих чугунов наиболее высокие. Высокопрочные чугуны не уступают в прочности углеродистым конструкционным сталям, подвергаемым термической обработке. Пластичность этих чугунов удовлетворительная, но несколько уступает стали.

Для повышения механических свойств высокопрочные чугуны нередко подвергают термической обработке. Высокопрочные чугуны обозначаются (маркируются) буквами ВЧ и числом, показывающим предел прочности sВ. Высокопрочные чугуны широко применяются в автостроении и дизелестроении: коленчатые валы, крышки цилиндров и др.; в прокатных станах – прокатные валки и др.; в химической и нефтяной промышленности – корпуса насосов, вентили и т.п.

Механические свойства и назначение высокопрочных чугунов приведены в таблице 2.4.

Механические свойства высокопрочных чугунов

Марка чугуна σв, МПа σ0,2, МПа δ,% Твердость, НВ,
Не менее
ВЧ35 140-170
ВЧ40 140-202
ВЧ45 140-225
ВЧ50 153-345
ВЧ60 192-277
ВЧ70 228-302
ВЧ80 248-351
ВЧ100 270-360
Читайте также:  Сварочный аппарат полуавтомат характеристики

Из высокопрочного чугуна изготовляют две марки антифрикционных чугунов (АЧВ-1 и АЧВ-2) для деталей, работающих в узлах трения при повышенных и высоких давлениях (табл.2.6).

Ковкий чугун имеет в структуре графит хлопьевидной формы (рис. 2.14) и в связи с этим характеризуется высокой пластичностью.

а б

Рис. 2.14. Структура ковкого чугуна: а – ферритный; б – перлитный (x200; травление 4 % – ным спиртовым раствором азотной кислоты)

Детали из ковкого чугуна получают из отливок белого доэвтектического чугуна (2,4-3,4 % С) путем длительного отжига – томления, поэтому графит ковких чугунов носит название углерод отжига. Отливки должны быть сравнительно небольшими (толщина сечения не должна превышать 40-50 мм), чтобы исключить графитизацию сердцевины при медленном охлаждении массивной детали.

По структуре металлической основы ковкие чугуны бывают ферритными и перлитными.

Отливки из белого чугуна, предназначенные для отжига на ковкий чугун, упаковывают в специальные ящики. Первый этап отжига при температуре 950…970 °С обеспечивает распад цементита, входящего в состав ледебурита, и получение перлитного ковкого чугуна. Получение ферритного ковкого чугуна обеспечивается последующим понижением температуры до 720…740 °С и длительной выдержкой в указанных условиях, во время которой происходит распад цементита перлита с образованием феррита и графита (рис.2.15).

Рис. 2.15. Схема отжига белого чугуна на ковкий,

ферритный и перлитный чугуны

Процесс протекает очень медленно (до 100 часов) и зависит от структуры отливки и ряда технологических факторов. Для ускорения отжига часто чугун модифицируют (алюминием, бором и т.п.), что позволяет сократить время отжига на ферритный ковкий чугун до 24-60 часов.

Ковкие чугуны обозначаются символом КЧ, после которого указывается предел прочности sв и относительное удлинение d : КЧ55-4.

Внутренние напряжение в ковком чугуне полностью снимаются во время отжига.

Механические свойства и химический состав ковких чугунов

Марка чугуна σв, МПа, δ,% Твердость НВ, (кгс/мм 2 ) С, % Si, % Mn, % P S
Не менее Не более, %
Ферритные чугуны
КЧ 33-8 100-163 2,6-2,9 1,0-1,6 0,4-0,6 0,18 0,20
КЧ 37-12 110-163 2,4-2,7 1,2-1,4 0,2-0,4 0,12 0,06
Перлитные чугуны
КЧ 55-4 192-241 2,5-2,8 1,1-1,3 0,3-1,0 1,10 0,20
КЧ 65-3 212-269 2,4-2,7 1,2-1,4 0,3-1,0 0,10 0,06

Механические свойства чугуна снижаются тем больше, чем крупнее графитные включения и чем больше их на единицу площади. В некоторых узлах трения, испытывающих динамические нагрузки, нашел применение антифрикционный ковкий чугун марок АЧК-1 и АЧК-2 (табл.2.6).

Марки, химический состав и назначение антифрикционных чугунов

Марка Химический состав и назначение антифрикционных чугунов
АЧС-1 Перлитный чугун, легированный хромом (0,2-0,5 %) и медью (0,8-1,6 %); предназначен для изготовления деталей, рабо­тающих в паре с закаленным или нормализованным валом АЧС-2 Перлитный чугун, легированный хромом (0,2-0,5 %), нике­лем (0,2-0,5%), титаном (0,03-0,1%) и медью (0,2-0,5%); назначение – такое же, как и чугуна марки АСЧ-1 АЧС-3 Перлитно-ферритный чугун, легированный титаном (0,03-0,1 %) и медью (0,2-0,5 %); детали из такого чугуна могут работать в паре, как с "сырым", так и с термически обработанным валом АЧС-4 Перлитный чугун, легированный сурьмой (0,04-0,4 %); ис­пользуется для изготовления деталей, работающих в паре с закаленным или нормализованным валом АЧС-5 Аустенитный чугун, легированный марганцем (7,5-12,5 %) и алюминием (0,4-0,8 %); из этого чугуна изготавливают дета­ли, работающие в особо нагруженных узлах трения в паре с закаленным или нормализованным валом
Марка Химический состав и назначение антифрикционных чугунов
АЧС-6 Перлитный пористый чугун, легированный свинцом (0,5-1,0 %) и фосфором (0,5-1,0 %); рекомендуется для производства де­талей, работающих в узлах трения с температурой до 300 "С в паре с "сырым" валом АЧВ-1 Перлитный чугун с шаровидным графитом; детали из такого чугуна могут работать в узлах трения с повышенными окруж­ными скоростями в паре с закаленным или нормализованным валом АЧВ-2 Перлитно-ферритный чугун с шаровидным графитом; изготов­ленные из этого чугуна детали хорошо работают в условиях тре­ния с повышенными окружными скоростями в паре с "сырым" валом АЧК-1 Перлитный чугун с хлопьевидным графитом, легированный медью (1,0-1,5 %); предназначен для изготовления деталей, работающих в паре с термически обработанным валом АЧК-2 Ферритно-перлитный чугун с хлопьевидным графитом; детали из этого чугуна работают в паре с "сырым" валом

Легированный чугун

Дата добавления: 2017-04-05 ; просмотров: 4662 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Adblock
detector