Форма графита в белом чугуне

3.2.2 Примеси в чугуне. Обычный промышленный чугун содержит те же примеси, что и углеродистая сталь, т.е. марганец, кремний, серу и фосфор, но в большем количестве. Эти примеси существенно влияют на условия графитизации и. следовательно, структуру и свойства чугуна.

Кремний особенно влияет на структуру чугуна, усиливая графитизацию. Содержание кремния в чугунах колеблется в широких пределах: от 0,3-0,5 до 3-5%. Изменяя содержание кремния, можно получить чугуны, совершенно различные по свойствам и структуре – от малокремнистого белого до высококремнистого ферритного (серого с пластинчатым) или высокопрочного (с шаровидным графитом).

Марганец в отличие от кремния препятствует графитизации, или, как говорят, способствует отбеливанию чугуна.

Сера также способствует отбеливанию чугуна, но одновременно ухудшает его литейные свойства (в частности, снижает жидкотекучесть). Поэтому содержание серы в чугуне лимитируется: верхний предел для мелкого литья 0,08 %; для более крупного (когда можно допустить несколько худшую жидкотекучесть) до 0,10,12% S.

Фосфор практически не влияет на процесс графитизации. Однако фосфор полезная примесь в чугуне, так как он улучшает жидкотекучесть.

Белый чугун.

Такое название чугун получил по виду излома, который имеет матово-белый цвет. Весь углерод в этом чугуне находится в связанном состоянии в виде цементита. Белые чугуны в зависимости от содержания углерода могут быть доэвтектическими (перлит + ледебурит), эвтектическими (ледебурит) и заэвтектиче-скими (первичный цементит + ледебурит). Эти чугуны отличаются большой твердостью (450—550НВ) из-за присутствия в них большого количества цементита. Поэтому они очень хрупкие и для изготовления деталей машин не используются.

Отливки из белого чугуна служат для последующего изготовления ковкого чугуна с помощью графитизирующего отжига. В дальнейшем он применяется для изготовления деталей повышенной усталостной прочности: коленчатых и распределительных валов, седел клапанов, зубчатых колес масляного насоса, суппортов дискового тормозного механизма и др.

Отбеленные чугуны-отливки имеют поверхностные слои (12–30мм) со структурой белого чугуна, а сердцевину со структурой серого чугуна. Высокая твердость поверхности такой отливки повышает ее стойкость к истиранию. Поэтому отбеленный чугун применяют для изготовления валков листовых прокатных станов, колес, тормозных колодок и многих других деталей, работающих в условиях повышенного изнашивания.

Серый чугун.

Такое название чугун получил по виду излома, который имеет серый цвет. В структуре серого чугуна имеется графит. Структура чугуна состоит из металлической основы и графита (в форме пластин), и свойства его зависят от этих двух составляющих.

Графит по сравнению со сталью имеет низкие механические свойства, поэтому в некотором приближении можно считать, что места, которые он занимает, это пустоты и трещины. С увеличением числа пустот механические свойства чугуна резко ухудшаются. При растягивающих напряжениях легко образуются центры разрушения на концах графитных включений. Значительно лучше ведет себя чугун при сжатии и изгибах.

Серые чугуны являются сплавами сложного состава, содержащими железо, углерод, кремний, марганец и примеси, такие, как сера и фосфор. Последний частично растворяется в феррите (примерно 0,3 %) и, кроме того, входит в тройную эвтектику (Fе–С–Р) с температурой плавления 950°С. Это существенно улучшает литейные свойства чугуна.

Сера вредная примесь, снижает механические и литейные свойства чугунов и повышает склонность к образованию в них трещин.

Кремний входит в состав серых чугунов (1–3%) как основной химический элемент и увеличивает выделение графита при затвердевании и разложении выделившегося цементита.

Марганец (0,2–1,1%) положительно влияет на механические свойства чугуна, но затрудняет процесс графитизации или способствует его отбеливанию. Таким образом, можно сказать, что степень графитизации напрямую зависит от количества углерода (2,2–3,7%) и кремния (1–3%) в чугуне.

В небольших количествах в серые чугуны могут попасть из руды хром, никель и медь, которые тоже влияют на условие графитизации. Количество графитных включений и структура основы влияют на свойства серого чугуна.

По структуре металлической основы серые чугуны делят на три группы:

1) серый перлитный со структурой перлит +графит (количество связанного углерода составляет примерно 0,8%);

2) серый ферритно-перлитный со структурой феррит + перлит + графит (количество связанного углерода меньше 0,8%);

3) серый ферритный со структурой феррит + графит (весь углерод в виде графита).

Механические свойства серого чугуна зависят от свойств металлической основы и ее количества, формы и размеров графитных включений (пустот).

Маркировка. По ГОСТ 1412–85в обозначение чугуна входит сочетание букв и цифр, например СЧ15. СЧ обозначает серый чугун, цифры показывают значение временного сопротивления при растяжении. Стандарт предусматривает следующие марки чугуна: СЧ10; СЧ15; СЧ18; СЧ20; СЧ21; СЧ24; СЧ25; СЧЗО; СЧ35; СЧ40; СЧ45.

Значения показателей некоторых серых чугунов приведены в таблице 3.1.

Таблица 3.1 – Механические показатели некоторых серых чугунов

Марка чугуна σв, МПа НВ Структура металлической основы
СЧ15 163-229 Феррит
СЧ25 180-250 Феррит + перлит
СЧ40 207-285 Перлит
СЧ45 229-289 Перлит

Наличие графита способствует измельчению стружки при обработке резанием и оказывает смазывающее действие, что повышает износостойкость чугуна.

Ферритные серые чугуны марок СЧ10 и СЧ15 используют для слабо- и средненагруженных деталей: крышек, фланцев, маховиков, суппортов, тормозных барабанов, ведущих дисков сцепления и т. д.

Ферритно-перлитные серые чугуны марок СЧ20 и СЧ25 применяют для деталей, работающих при повышенных статических и динамических нагрузках: блоков цилиндров двигателя, поршней цилиндров, барабанов сцепления, станин станков и др.

Перлитный чугун применяют для отливки станин мощных станков и механизмов. Часто используют перлитные серые модифицированные чугуны. Такие чугуны получают при добавлении в жидкий чугун перед разливкой специальных добавок ферросилиция (0,3–0,6% от массы шихты) или силикокальция (0,3–0,5% от массы шихты). К таким чугунам относят чугуны марок СЧ40 и СЧ45, которые обладают более высокими механическими свойствами из-за измельчения формы графитных включений. Эти чугуны применяют для изготовления корпусов насосов, компрессоров и гидроприводов.

Для деталей, работающих при повышенных температурах, применяют легированные серые чугуны, которые дополнительно содержат хром, никель, молибден и алюминий.

Ковкий чугун.

Ковким чугун называется потому, что его можно подвергать обработке давлением, хотя чугуны не куют, а детали из чугуна получают лишь методом литья в связи с тем, что ковкий чугун имеет более высокую пластичность по сравнению с серым.

Ковкий чугун получают путем графитизирующего отжига отливок из белого доэвтектического чугуна. В составе ковкого чугуна не должно быть большого количества марганца, так как он при отжиге препятствует процессу графитизации, а также большого количества углерода и кремния, что приводит к затруднению получения отливок из белого чугуна, потому что при кристаллизации графит начинает выделяться в виде пластинок. Поэтому химический состав белого чугуна, отжигаемого на ковкий чугун, имеет ограничения по содержанию: 2,5–3,0%С; 0,7–1,5%Si; 0,31,0%Мn; менее 0,12%S; менее 0,18%Р.

Читайте также:  От чего запитать светодиодную ленту

Толщина сечения отливки не должна превышать 40–50мм, так как при большей толщине в сердцевине образуется пластинчатый графит, что делает чугун непригодным для отжига.

Отжиг проводится в две стадии. На первой стадии отливки из белого чугуна медленно нагревают до температуры 930–1050°С и выдерживают в течение 15ч при этой температуре. При этом происходит распад цементита, входящего в высокотемпературный ледебурит, и из выделившегося углерода образуется хлопьевидный графит.

На второй стадии отливки охлаждают до температуры 700–760°С, соответствующей эвтектоидному превращению, и выдерживают при этой температуре до 30ч, либо очень медленно охлаждают. При этом происходит распад цементита, входящего в перлит. После окончания второй стадии структура чугуна состоит из феррита и хлопьевидного графита. Такой чугун называют ферритным ковким чугуном.

Если охлаждение было недостаточно медленным в районе температур, соответствующих эвтектоидному превращению, или недостаточной была выдержка на второй стадии графитизации, то распад цементита, входящего в перлит, произойдет не полностью. При этом структура чугуна будет состоять из феррита, перлита и хлопьевидного графита. Такой чугун называют феррито-перлитным ковким чугуном.

Если охлаждение в интервале температур было ускоренным, то распада цементита, входящего в перлит, не произойдет. При этом структура чугуна будет состоять из перлита и хлопьевидного графита. Такой чугун называется перлитным ковким чугуном.

Маркировка. Ковкий чугун согласно ГОСТ 1215–79 маркируется буквами «КЧ» и двумя числами: первое указывает временное сопротивление при растяжении; второе относительное удлинение (в %).

Значения механических показателей некоторых ковких чугунов приведены в таблице 3.2.

Таблица 3.2 – Механические показатели некоторых ковких чугунов

Марка чугуна σв, МПа δ, % НВ Структура металлической основы
КЧЗ0-6 100-163 Феррит+ 10–3 % перлита
КЧ37-12 110-163 То же
КЧ60-3 200-269 Перлит + 20–0% феррита
КЧ80-1,5 1,5 270-320 То же

Ковкий чугун идет на изготовление деталей повышенной прочности и вязкости: картеров, редукторов, коробок передач, кронштейнов рессор и др.

Высокопрочный чугун.

Высокопрочным называют чугун с шаровидной формой графита, получаемой в процессе кристаллизации отливки. Такая форма графитовых включений имеет меньшую поверхность по сравнению с пластинчатой и хлопьевидной при одинаковом объеме, уменьшает концентрацию напряжений.

Шаровидную форму графита получают введением в жидкий чугун магния, или магния с никелем, или ферросилиция.

Под действием модификаторов графит в процессе кристаллизации принимает шаровидную форму. Чугуны с шаровидной формой графита имеют более высокие механические свойства по сравнению с другими чугунами.

Высокопрочные чугуны близки по свойствам к литой углеродистой стали, но обладают лучшими литейными свойствами, хорошо обрабатываются резанием, сохраняют высокую износостойкость. Для повышения пластичности и вязкости отливки из высокопрочного чугуна подвергают термической обработке: отжигу, нормализации, закалке и отпуску. Одновременно с повышением пластичности при термической обработке снижаются остаточные напряжения в отливках, что повышает их работоспособность.

Маркировка. Высокопрочный чугун согласно ГОСТ 7293–85 обозначается аналогично ковким чугунам: буквами «ВЧ» и числами: первое указывает величину временного сопротивления, второе относительное удлинение (в %).

Стандарт предусматривает следующие марки чугунов: ВЧ35-22;ВЧ40-15; ВЧ45-10; ВЧ50-7; ВЧ60-3; ВЧ70-2; ВЧ80-2; ВЧ100-2.Химический состав высокопрочного чугуна: 3,2–3,6 % С; 1,6–2,9 % Si; 0,3–0,7 % Мn; не более 0,02 %S; не более 0,1 %Р. Высокопрочные чугуны на ферритной основе (ВЧ35-22, ВЧ40-15, ВЧ45-10) имеют δ от 22 до 10 %, 140-225 НВ; на перлитной основе (ВЧ50-7, ВЧ60-3, ВЧ70-2, ВЧ80-2, ВЧ 100-2) – δ от 7 до 2 %, 153-360НВ.

Высокая прочность и пластичность высокопрочных чугунов позволяют использовать их для изготовления коленчатых валов автомобильных дизелей и других деталей, работающих в узлах трения при повышенных нагрузках.

Антифрикционные чугуны.

Антифрикционные чугуны специальные серые и высокопрочные чугуны с повышенными антифрикционными свойствами. Эти чугуны обладают низким коэффициентом трения, зависящим от соотношения феррита и перлита в основе, а также от количества и формы графита. В перлитных чугунах высокая из­носостойкость обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфорной эвтектики при наличии изолированных выделений пластинчатого графита.

Отливки из антифрикционного чугуна (ГОСТ 1585–85) применяют для изготовления деталей, работающих в подшипниковых узлах трения.

Маркировка. Существуют следующие марки антифрикционного чугуна: АЧС1; АЧС2; АЧСЗ; АЧС1; АЧВ2; АЧК1; АЧК2. Буквы «АЧС» обозначают антифрикционный серый чугун; «АЧВ» антифрикционный высокопрочный чугун; «АЧК» антифрикционный ковкий чугун.

Антифрикционные серые чугуны перлитные чугуны АЧС-1 и АЧС-2 и перлитно-ферритный чугун АЧС-3 обладают низким коэффициентом трения, зависящим от соотношения феррита и перлита в основе, а также от количества и формы графита.

В перлитных чугунах высокая износостойкость обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфорной эвтектики при наличии изолированных выделений пластинчатого графита.

Антифрикционные серые чугуны используют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из чугунов марок АЧС-1 и АЧС-2, а для работы в паре с термически валами применяют чугун АЧС-3.

Антифрикционные высокопрочные (с шаровидным графитом) чугуны изготовляют с перлитной структурой АЧВ-1 и ферритно-перлитной (50% перлита) — АЧВ-2. Чугун АЧВ-1 используют для работы в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом.

Главное достоинство антифрикционных чугунов по сравнению с антифрикционными бронзами низкая стоимость, а основной недостаток плохая прирабатываемость, что требует точного сопряжения трущихся поверхностей.

1. В чем разница между чугунами и сталями?

2. По каким признакам классифицируют чугуны?

3. Какие примеси есть в чугунах, их влияние на свойства чугунов?

4. Почему чугуны называют «белыми»?

5. Почему чугуны называют «серыми»?

6. Как маркируют серые чугуны?

7. Какие чугуны считаются ковкими и как их маркируют?

8. Как маркируют высокопрочные чугуны?

9. Как маркируют антифрикционные чугуны, область их применения?

Легированные стали

3.3.1 Классификация легированных сталей. Легированными называют стали, содержащие легирующие добавки, искусственно (специально) введенные в состав сталей при их изготовлении для получения е свойств и улучшения механических, физических и химических свойств.

В качестве легирующих химических элементов используют:

· хром; · кремний; · ванадий; · алюминий;
· никель; · вольфрам; · кобальт; · медь
· марганец; · молибден; · титан; и др.

Хром повышает жаростойкость и коррозионную стойкость стали, увеличивает ее электрическое сопротивление и уменьшает коэффициент линейного расширения, повышает ее прокаливаемость.

Никель увеличивает пластичность и вязкость стали, снижает температуру порога хладоломкости и уменьшает чувствительность стали к концентраторам напряжений, повышает прокаливаемость. В результате повышается сопротивление стали хрупкому разрушению. Так, при введении 1% никеля снижается порог хладоломкости стали на 60–80°С, а при введении 3% никеля обеспечивается ее глубокая прокаливаемость.

Читайте также:  Регулятор тока на lm358 для зарядки аккумулятора

Марганец, подобно хрому и никелю, увеличивает прокаливаемость стали, но кроме этого уменьшает и вязкость феррита. Марганец используют для частичной замены никеля с целью получения необходимого сочетания механических свойств стали и ее стоимости, с учетом меньшей стоимости марганца.

Кремний широко используют при выплавке стали как раскислитель. Легирование кремнием углеродистых и хромистых сталей увеличивает их жаростойкость. Так, сталь, в состав которой входит 5% хрома и 1%кремния, в среде печных газов по жаростойкости аналогична стали с 12% хрома. Содержание кремния в стали ограничивают, так как он повышает склонность к тепловой хрупкости.

Вольфрам, молибден, ванадий, титан, бор и другие химические элементы вводят в сталь вместе с хромом, никелем и марганцем для дополнительного улучшения ее свойств.

Молибден и вольфрам повышают прокаливаемость стали (особенно в присутствии никеля), способствуют измельчению зерна и подавлению отпускной хрупкости. Легирование стали молибденом приводит к значительному улучшению ее механических свойств после цементации.

При введении в сталь ванадия, титана, ниобия и циркония образуются труднорастворимые в аустените карбиды, что вызывает измельчение зерна, снижение порога хладноломкости, уменьшение чувствительности стали к концентраторам напряжений.

Однако этот эффект проявляется лишь при малом содержании этих легирующих химических элементов в стали (до 0,15 %). При большем количестве они вызывают снижение прокаливаемости и сопротивления стали хрупкому разрушению.

Положительное влияние бора на повышение прокаливаемости и прочности стали проявляется лишь при микролегировании бором (0,001–0,005%). При повышенном содержании бора сталь становится хрупкой.

Все легирующие элементы уменьшают рост зерна аустенита. Исключение составляют марганец и бор, которые способствуют росту зерна. Остальные химические элементы, измельчающие зерно, оказывают различное влияние. Так, никель, кобальт, кремний, медь относительно слабо влияют на рост зерна; хром, молибден, вольфрам, ванадий, титан сильно измельчают зерно (элементы перечислены в порядке роста силы их действия).

При отпуске стали легирующие химические элементы замедляют процесс распада мартенсита.

Некоторые элементы, такие как никель или марганец, оказывают незначительное влияние, тогда как большинство (хром, молибден, кремний и др.) весьма заметное.

Легированные стали классифицируют:

1) по равновесной структуре:

· доэвтектоидные стали, имеющие в структуре избыточный перлит;

· эвтектоидные стали, имеющие перлитную структуру;

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

4.2. ЛИТЕЙНЫЕ ЧУГУНЫ

В зависимости от формы графитных включений (рис.7) литейные чугуны разделяют на следующие виды:

1) Чугун с пластинчатым графитом (серый чугун);

2) Чугун с шаровидным графитом (высокопрочный; чугун)

3) Чугун с хлопьевидным графитом (ковкий чугун);

4) Чугун с вермикулярным графитом.

4.2.1. СЕРЫЕ ЧУГУНЫ

Серым называют чугун, в котором графит преимущественно имеет форму слегка изогнутых пластинок или разветвлённых розеток с пластинчатыми лепестками ( рис.7).

Рис.7. Возможные формы графитных включений: а) пластинчатая; б) хлопьевидная; в) шаровидная г) вермикулярная

Более точное название серого чугуна которое закреплено ГОСTом 1412-85чугун с пластинчатым графитом.

У серых чугунов хорошие технологические и прочностные свойства, что определяет широкое применение их как конструкционного материала. Наличие графита определяет существенные достоинства серого чугуна: высокие литейные свойства (хорошая жидкотекучесть и малая усадка), хорошая обрабатываемость резанием, так как графит делает стружку ломкой, высокие демпфирующие и антифрикционные свойства.

Происхождение графита в серых чугунах

Графит является характерной структурной составляющей серых чугунов, наличие его определяет тёмный серый цвет излома. Поэтому этот чугун и получил название серого.

Графитизация – это процесс выделения графита при кристаллизации или охлаждении чугунов. Графит может образовываться как из жидкой фазы при кристаллизации, так и из твёрдой фазы. Графитизация чугуна и её полнота зависит от скорости охлаждения, химического состава и наличия центров кристаллизации. Чем медленнее охлаждение чугуна, тем большее развитие получает процесс графитизации.

Графит в серых чугунах получается в результате распада цементита, образующегося при затвердевании сплавов по цементитной диаграмме состояния системы Fe3C C, а также путём непосредственного выделения из жидкого или твёрдого раствора (аустенита или феррита). При высоких температурах цементит распадается по реакции Fe3C3 Fe + С (графит). Чем выше температура и меньше скорость охлаждения, тем больше образуется графита в чугуне.

Наиболее сильное положительное влияние на графитизацию оказывает присутствие в чугуне кремния, который является необходимым компонентом серых чугунов .

При одинаковой скорости охлаждения и прочих равных условиях количество образующегося графита тем больше, чем выше в чугунах содержание кремния.
21

Меняя содержание кремния можно получать чугуны с различной структурой и свойствами

Углерод также способствует графитообразованию: чем его больше, тем больше при прочих равных условиях в серых чугунах графита.

Рис.8. Структурная диаграмма чугунов в зависимости от содержания кремния и углерода: Iбелый чугун (П + Л + Ц2); IIполовинчатый чугун; III – серый перлитный чугун (П + Г); IVсерый ферритно-перлитный чугун (Ф + П + Г); V – серый ферритный чугун (Ф + Г).

Наглядное представление о влиянии углерода и кремния на степень графитизации чугуна даёт структурная диаграмма чугунов (рис.8).

В чугунах с высоким содержанием кремния при медленном охлаждении отливки первичная кристаллизация происходит по стабильной диаграмме железо-углерод (графит), т. е. в этом случае графит появляется непосредственно из жидкой фазы. С увеличением скорости охлаждения создаются условия для первичной кристаллизации по метастабильной диаграмме железо-цементит и графит образуется вследствие распада цементита при дальнейшем охлаждению. Иногда ледебурит не разлагается и остаётся в структуре (получается отбел).

Вторичная кристаллизация преимущественно протекает в соответствии с метастабильной диаграммой, вторичный цементит и цементит перлита могут сохраниться или графитизироваться в зависимости от содержания кремния и скорости охлаждения.

Серые чугуны образуются только при малых скоростях охлаждения в узком интервале температур, когда мала степень переохлаждения жидкой фазы. В этих условиях весь углерод или его большая часть графитизируется в виде пластинчатого графита., а содержание углерода в виде цементита составляет не более 0,8%. Промышленные чугуны содержат (2,0 –4,5)% углерода, (1-3,5)% кремния, (0,5-1,0)% марганца, до 0,3 % фосфора, до 0, 2% серы.

Классификация и структура серых чугунов

Серые чугуны подразделяют по структуре металлической основы и по размерам, форме и расположению графитных включений.

По структуре металлической основы различают серые чугуны:(рис.9):

1) на ферритной основе (со структурой феррит + графит));
2) на ферритно-перлитной основе (феррит + перлит + графит);
3) на перлитной основе (перлит + графит).

Читайте также:  Как сделать телегу для мотоблока своими руками

Количество химически связанного углерода в серых чугунах не превышает 2%, поэтому их металлическая основа аналогична сталям доэвтектоидной, эвтектоидной и заэвтектоидной.

Металлическая основа может быть перлитной, когда 0,8% углерода находится в виде цементита, а остальной углерод в виде графита; ферритно-перлитной, когда количество углерода в виде цементита менее 0,8% углерода; ферритной, когда углерод находится практически полностью в виде графита.

Следовательно, серый чугун можно рассматривать как структуру, состоящую из сталистой механической основы с рассеянными в ней графитными включениями (рис.10). Свойства чугуна зависят от свойств металлической основы и характера графитных включений.

Рис.9. Микроструктура серых чугунов: а)ферритного(Ф + Г);
б) ферритно-перлитного (Ф + Г); в) перлитного (П + Г)

По сравнению с металлической основой графит имеет низкую прочность. Поэтому графитовые включения можно считать нарушениями сплошности (пустотами) в металлической основе. Тем самым чугун можно рассматривать как сталь, пронизанную включениями графита, ослабляющими его металлическую основу.

По размерам, форме и расположению графита различают чугуны с крупными, средними и мелкими графитовыми включениями; с прямолинейными и завихренными включениями; с равномерным, гнездовым и эвтектическим расположением графита.

Марки, свойства и применение серых чугунов

ГОСТ 1412-85 предусматривает следующие марки чугуна
с пластинчатым графитом (серого чугуна): СЧ 10, СЧ 15, СЧ 20, СЧ 25,СЧ 30, СЧ 35.

Рис.10. Графитовые включения пластинчатой формы

Таблица 1. Прочность и химический состав (в %) серых чугунов

Прочность
при растяжении
σв, МПа
(кгс/мм2)

Белый чугун — это разновидность чугуна, которая в своём составе содержит углеродные соединения. В этом сплаве они называются цементитами. Своё название подобный металл получил благодаря характерному белому цвету и блеску, который хорошо виден на изломе. Этот блеск проявляется благодаря тому, что в составе подобного чугуна отсутствуют большие включения графита. В процентном отношении, он составляет не более 0,3%. Поэтому обнаружить его можно только спектральным или химическим анализом.

Состав и виды белого чугуна

Белый чугун состоит из так называемой цементитной эвтектики. В связи с этим его делят на три категории:

  • Доэвтектические. Это такие сплавы, в которых углерод не превышает 4,3% от общего состава. Он получается после полного остывания. В итоге приобретает характерную структуру таких элементов как перлит, вторичный цементит и ледебурит.
  • Эвтектические. У них содержание углерода равняется 4,3%.
  • Заэвтектический белый чугун. Содержание превышает 4,35% и может достигать 6,67%.

Кроме приведенной классификации его разделяют на обыкновенный, отбеленный и легированный.

Внутренняя структура белого чугуна представляет собой сплав двух элементов: железа и углерода. Несмотря на высокотемпературное производство в нём сохраняется структура с мелкой зернистостью. Поэтому если надломить деталь из такого металла будет наблюдаться характерный белый цвет. Кроме этого, в структуре доэвтектического сплава, например, твёрдых марок, кроме перлита и вторичного цементита всегда присутствует цементит. Его процентное содержание может приближаться к 100%. Это характерно для эвтектического металла. Для третьего вида структура представляет собой состав из эвтектики (Лп) и первичного цементита.

Одной из разновидностей подобных сплавов является так называемый отбелённый чугун. Его основу, то есть сердцевину, составляет серый или высокопрочный чугун. Поверхностный слой содержит высокий процент таких элементов, как ледебурит и перлит. Эффекта отбеливания глубиной до 30 мм добиваются, используя метод быстрого охлаждения. В результате поверхностный слой получается из белого цвета, а далее отливка состоит из обыкновенного серого сплава.

Структура белого чугуна

В зависимости от процентного содержания легированных добавок, различают следующие виды металла:

  • низколегированные (в них содержится легирующих элементов не более 2,5%);
  • среднелегированные (процент подобных элементов достигает 10%);
  • высоколегированные (в них количество легирующих добавок превышает 10%).

В качестве легирующих добавок применяют достаточно распространённые элементы. Полученный таким образом легированный белый чугун приобретает новые, заранее заданные свойства.

Свойства белого чугуна

Любой чугунный сплав, с одной стороны, очень прочный, но в то же время обладает достаточной хрупкостью. Поэтому в качестве основных положительных свойств белого чугуна можно выделить:

  • Высокую твёрдость. Это значительно затрудняет обработку деталей, в частности, резанием.
  • Очень высокое удельное сопротивление.
  • Отличную износостойкость.
  • Хорошую стойкость к повышенному тепловому воздействию.
  • Достаточную коррозийную стойкость, в том числе, к различным кислотам.

Белые чугуны, с пониженным процентом углерода, обладают большей устойчивостью к высоким температурам. Это свойство используется для снижения количества трещин в отливках.

Внешний вид белого чугуна

К недостаткам следует отнести:

  • Низкие литейные свойства. Он имеет плохое заполнение отливочных форм. Во время заливки могут образовываться внутренние трещины.
  • Повышенная хрупкость.
  • Плохая обрабатываемость самих отливок и деталей из белого чугуна.
  • Большая усадка, которая может достигать 2%.
  • Низкая стойкость к ударным воздействиям.

Ещё одним недостатком является плохая свариваемость. Проблемы в сварке деталей из подобного материала вызваны тем, что в момент сварки происходит образование трещин, как при нагреве, так и при охлаждении.

Маркировка белого чугуна

Для маркировки белого чугуна применяют буквы русского алфавита и цифры. Если в нём имеются примеси, то маркировка начинается с буквы «Ч». Состав имеющихся легирующих добавок можно определить по последующим буквам П, ПЛ, ПФ, ПВК. Они свидетельствую о наличии кремния. Если полученный металл обладает повышенной износостойкостью, то его маркировка будет начинаться с буквы «И», например ИЧХ, ИЧ. Например, наличие в маркировке обозначения «Ш», означает, что в структуре сплава имеется графит шаровидной формы.

Цифры указывают на количество дополнительных веществ, присутствующих в белом чугуне.

Марка ЧН20Д2ХШ расшифровывается следующим образом. Это жаропрочный высоколегированный металл. Он содержит следующие элементы: никеля — 20%, меди — 2%, хрома — 1%. Остальные элементы — это железо, углерод, графит шаровидной формы.

Область применения

Этот сплав используют в следующих отраслях: машиностроение, станкостроение, судостроение. Из него производят некоторые элементы бытовых изделий. В машиностроении из него изготавливают: детали грузовых и легковых автомобилей, тракторов, комбайнов и другой сельскохозяйственной техники. Применение легирующих добавок позволяет получать специально заданные свойства. Например, используют при изготовлении плит с различной формой поверхности.

Отливка из белого чугуна

Отбелённый чугун имеет достаточно ограниченную область применения. Из него производят детали несложной конфигурации. Например: шары для мельниц, колеса различного назначения, детали для прокатных станов.

Широкое применение он получил при производстве деталей таких крупных агрегатов, как гидравлические и формовочные машины, другие промышленные механизмы этого направления. Специфическая особенность их работы заключается в том, что они постоянно подвергаются воздействию абразивного материала.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ссылка на основную публикацию
Adblock
detector