Физические свойства сплавов алюминия

Содержание

Теплофизические свойства алюминиевых сплавов АМц, АМг, Д16, АК и др.

В таблице представлены состав и теплофизические свойства алюминиевых сплавов для нагартованного, закаленного и отожженого состояний сплава:

  • плотность сплавов, кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·град);
  • коэффициент линейного теплового расширения, 1/град;
  • удельное электрическое сопротивление, Ом·м.

Теплофизические свойства представлены для следующих сплавов алюминия: А, АМц, АМг, Амг1, АМг5, АВ, Д18, Д1, Д16, АК8, АК4, 32S, В95. Свойства сплавов даны при комнатной температуре, за исключением коэффициента теплового расширения (КТР), который указан для интервалов температуры 20-100, 20-200 и 20-300°С.

Теплопроводность алюминиевых сплавов

Представлена сводная таблица теплопроводности алюминиевых сплавов. В ней приведены значения теплопроводности распространенных алюминиевых сплавов (сплавы алюминия с кремнием, медью, магнием и цинком, литейные сплавы, дюралюминий) при различной температуре в диапазоне от 4 до 700К.

По данным таблицы видно, что теплопроводность алюминиевых сплавов в основном увеличивается с ростом температуры. Наибольшей теплопроводностью при комнатной температуре обладает такой сплав, как АД1 — его теплопроводность при этой температуре равна 210 Вт/(м·град). Более низкая теплопроводность свойственна в основном литейным алюминиевым сплавам, например АК4, АЛ1, АЛ8 и другим.

Температура в таблице в градусах Кельвина !

Таблица теплопроводности сплавов алюминия

Алюминиевый сплав Температура, K Теплопроводность алюминиевого
сплава, Вт/(м·град)
АВ 298…373…473…573 176…180…184…189
АД1 нагартованный 4…10…20…40…80…150…300 50…130…260…400…250…220…210
АД31 закаленный, состаренный 4…10…20…40…80…200…300…600 35…87…170…270…230…200…190…190
АД33 300…373…473…573 140…151…163…172
АД35 298…373…473…573 170…174…178…182
АК4 300…500…600…700 145…160…170…170
АК6 закаленный, состаренный 20…77…223…293…373…473…573…673 35…90…192…176…180…184…184…189
АК8 закаленный, состаренный 20…40…80…150…300…573…673 50…72…100…125…160…180…180
АЛ1 300…400…600 130…140…150
АЛ2 20…77…293 10…18…160
АЛ4 300…473…673 150…160…155
АЛ5 300…473…573 160…170…180
АЛ8 300…473…673 92…100…110
АМг1 298…373…473…573…673 184…188…192…188…188
АМг2 4…10…20…40…80…150…300…373…473…573…673 4,6…12…25…49…77…100…155…159…163…164…167
АМг3 20…77…90…203…293 41…86…89…123…132
АМг5 отожженный 10…20…40…80…150…300…473…673 10…20…40…66…92…130…130…150
АМг6 20…77…173…293 13…43…75…92
АМц нагартованный 4…10…20…40…80…150…300…473…573…673 11…28…58…110…140…150…180…180…184…188
В93 300…473…673 160…170…160
В95 300…473…673 155…160…160
ВАД1 20…80…300 30…61…160
ВАЛ1 300…473…673 130…150…160
ВАЛ5 300…573…673 150…160…160
ВД17 300…673 130…170
Д1 298…373…473…573…673 117…130…150…172…176
Д16 закаленный, состаренный 10…20…40…80…150…300…373…473…573 9…19…37…61…90…120…130…146…163
Д20 закаленный, состаренный 20…40…80…150…300…373…473…573…673 27…38…61…85…140…142…147…155…160
Д21 298…373…473…573 130…138…151…168

Свойства сплавов алюминия с кремнием, медью, магнием и цинком

В таблице представлены состав и следующие теплофизические свойства алюминиевых сплавов:

  • плотность сплавов, кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·°С);
  • коэффициент линейного теплового расширения, 1/град;
  • коррозионная устойчивость в воде и на воздухе;
  • температура изменения прочности.

Плотность, теплопроводность и коэффициент линейного теплового расширения сплавов представлены в зависимости от температуры в интервале от 500 до 660°С. Плотность алюминиевых сплавов с кремнием и цинком наиболее высока. Из легких сплавов можно отметить сплавы, содержащие магний.

Следует отметить, что наибольшей коррозионной устойчивостью в воде и на воздухе обладают алюминиевые сплавы с высоким содержанием меди — они устойчивы к коррозии до температуры 200…250°С. Такие сплавы также обладают высокими прочностными характеристиками.

Теплопроводность алюминиевых сплавов в зависимости от температуры

В таблице представлены состав алюминиевых сплавов и коэффициент их теплопроводности в диапазоне температуры от 173 (-100°С) до 773К (500°С). По данным таблицы видно, что чем больше содержится алюминия в сплаве, тем выше его теплопроводность. При нагревании алюминиевых сплавов, их теплопроводность, как правило, увеличивается.

Теплопроводность сплава алюминия с литием

Даны значения коэффициента теплопроводности сплава алюминия с литием при комнатной температуре. Теплопроводность указана в зависимости от содержания лития в сплаве по массе (от 0 до 11%). Необходимо отметить, что увеличение процентного содержания лития приводит к уменьшению теплопроводности сплава.

Плотность, теплопроводность, теплоемкость алюминиевых сплавов Амц, Амг1, Амг2, Д1, Д16

Представлены значения плотности (при температуре 293К), коэффициента теплопроводности, Вт/(м·°С), и удельной (массовой) теплоемкости, кДж/(кг·°С) некоторых алюминиевых сплавов в зависимости от температуры (свойства даны при температурах 25, 100 , 200, 300, 400 °С).

В таблице указана плотность, теплопроводность, теплоемкость следующих сплавов алюминия: Амц, Амг1, Амг2, Д1, Д16. Следует отметить, что плотность алюминиевых сплавов примерно одинаковая, но немного выделяется такой сплав алюминия, как Д-1 — его плотность равна 2800 кг/м 3 .

Теплопроводность, теплоемкость и удельное сопротивление сплава 1151Т

В таблице представлены значения коэффициента теплопроводности, Вт/(м·град), удельной (массовой) теплоемкости, кДж/(г·град)
и удельного сопротивления алюминиевого сплава 1151Т.

Свойства алюминиевого сплава 1151Т даны в зависимости от температуры (в интервале от 0 до 400 °С). По данным таблицы видно, что теплопроводность этого сплава увеличивается при нагревании, однако в районе температуры 200°С имеет место некоторое ее снижение с последующим ростом. Такой же характер изменения свойственен и удельной теплоемкости сплава 1151Т. Удельное электрическое сопротивление рассматриваемого сплава увеличивается по мере роста его температуры.

Температурные коэффициенты линейного расширения (КТР) сплава 1151Т

В таблице представлены значения температурных коэффициентов линейного расширения (КТР) алюминиевого сплава 1151Т.
Коэффициенты линейного расширения алюминиевого сплава 1151Т даны в зависимости от температуры (в интервале от 0 до 500 °С). При высоких температурах КТР сплава 1151Т увеличивается.

Теплофизические свойства алюминиевых сплавов системы Al-Cu-Mn

В таблице представлены теплофизические свойства алюминиевых сплавов, содержащих медь и марганец. рассмотрены такие сплавы, как сплав 01205, 1201, Д21, Д20. Свойства сплавов представлены в зависимости от температуры в диапазоне от 25 до 400°С. Из рассмотренных сплавов наиболее теплопроводным является сплав Д20, с теплопроводностью 138 Вт/(м·град) при температуре 25°С.

Даны следующие теплофизические свойства сплавов:

  • коэффициент теплопроводности, Вт/(м·град);
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент линейного теплового расширения, 1/град.

Теплофизические свойства алюминиевых сплавов системы Al-Mg-Si

В таблице представлены следующие теплофизические свойства сплавов алюминия с магнием и кремнием:

  • плотность, кг/м 3 ;
  • коэффициент теплопроводности, Вт/(м·°С);
  • удельная теплоемкость, кДж/(кг·°С).

Свойства представлены в зависимости от температуры в интервале от 25 до 400°С. Даны свойства следующих сплавов: АД31, АД33, АД35, АВ. Следует отметить, что удельная теплоемкость сплавов увеличивается при нагревании.

Удельная теплоемкость высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др.

Указана массовая теплоемкость кДж/(кг·°С) при температуре от 20 до 400°С следующих сплавов: В93, В93пч, сплав 1933, В95, В95пч, В95оч, сплав 1973, В96Ц, В96Ц-3. С ростом температуры сплава его теплоемкость увеличивается.

Теплопроводность высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др.

В таблице приведены значения теплопроводности в размерности Вт/(м·град) в зависимости от температуры (интервал от 25 до 400°С) следующих алюминиевых сплавов: В93, В93пч, сплав 1933, В95, В95пч, В95оч, сплав 1973, В96Ц, В96Ц-3. Наиболее теплопроводными, по данным таблицы, являются сплавы В93, В93пч, сплав 1933, имеющие значение теплопроводности 163 Вт/(м·град) при температуре 25°С.

Источники:
1. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.
2. Чиркин В.С. Теплофизические свойства материалов ядерной техники.
3. В.М. Белецкий, Г.А. Кривов. Алюминиевые сплавы (состав, свойства, технология, применение). Справочник. Под общей ред. академика РАН И.Н. Фридляндера — К.: «Коминтех», 2005. — 365 с.
4. Богданов С.Н., Бурцев С.И., Иванов О.П., Куприянова А.В. Холодильная теника. Кондиционирование воздуха. Свойства веществ: Справ./ Под ред. С.Н. Богданова. 4-е изд., перераб. и доп. — СПб.: СПбГАХПТ, 1999.- 320 с.

Физические характеристики сплавов

Сплав АД1 – это алюминий технической чистоты, содержащий до 0,7% примесей, главные из которых – Fe и Si .

Примеси Fe и Si ., а так же некоторых других металлов несколько повышают прочностные характеристики, но значительно снижают показатели пластичности и электропроводность сплава.

Технический А l имеет высокую химическую стойкость в ряде сред, превосходя другие металлы. Высокая химическая стойкость алюминия объясняется на его поверхности тонкой, но достаточно плотной окисной пленки.

Читайте также:  Машина для изготовления шлакоблоков

Коррозионная стойкость алюминия тем выше, чем меньше содержание примесей (особенно Fe и Si .). Практически не снижают коррозионной стойкости лишь магний и марганец. Полуфабрикаты из сплава АД1 поставляются в отожженном и горячепрессованном состоянии. Однако независимо от состояния поставки заключительной операцией обработки прессованных профилей является правка растяжением, а также на роликоправильных машинах. При правке несколько повышаются прочностные свойства и интенсивно снижаются показатели пластичности.

Сплав АМц – сплав АМц является единственным деформируемым сплавом так называемой бинарной системы Al – Mn . Он обладает высокой коррозионной стойкостью, практически не отличается от коррозионной стойкости сплава АД1. Полуфабрикаты из сплава АМц хорошо свариваются газовой, атомно-водородной, аргоно-дуговой и контактной сваркой. Сплав хорошо деформируется в холодном состоянии и в горячем, температурный интервал (320-470 ° C) Термической обработкой не упрочняется, и профили из него поставляются в отожженном или горячепрессованном состоянии.

Сплав АМг3, Амг2 – относятся к системе А l – Mg – Mn – Si . Он обладает высокой коррозийной стойкостью, хорошо сваривается точечной, роликовой, газовой сваркой. Сплав хорошо деформируется в холодном и горячем состояниях. Интервал горячей деформации находится в пределах 340-430 ° C, охлаждение после горячей деформации на воздухе. Термической обработкой сплав не упрочняется: профили из него поставляются в горячепрессованном или отожженном состояниях. При производстве профилей применяют два вида отжига: низкий при температуре 270-300 ° C и высокий (полный) при 360-420 ° C. Охлаждение после отжига на воздухе.

Сплав АД31 – является представителем системы Al – Mg – Si . Он характеризуется высокими пластическими свойствами в температурно-скоростных условиях обработки давлением и повышенной коррозионной стойкостью. Коррозионная стойкость сплава практически не снижается при сварке. Сплав АД31 интенсивно упрочняется при термической обработке.

Если в отожженном состоянии прессованные профили из сплава АД31 имеют предел прочности 10-12 кгс/мм 2 , то после закалки и естественного старения предел прочности до 18-20 кг/мм 2 . Относительное удлинение при этом снижается не очень сильно (с 23-25 до 15-20%). Более значительное упрочнение сплава может быть получено искусственным старением при температуре 160-190 ° C, при этом предел прочности повышается до 27,5-30,0 кг/мм 2 . Однако при искусственном старении более интенсивно снижаются пластические характеристики.

На степень упрочнения сплава АД31 при искусственном старении существенное влияние оказывает время перерыва между закалкой и искусственным старением. Так с увеличением времени перерыва от 1,5 до 4 часов снижается предел прочности и предел текучести на 3-4 кг/мм 2 . Время выдержки при искусственном старении на механические свойства полуфабрикатов из сплава АД31 существенного влияния не оказывает.

Сплав АВ – относится к системе Al – Mg – Si – Cu Он имеет высокие пластические характеристики. Несмотря на относительно небольшое содержание М n при получении прессованных полуфабрикатов из сплава АВ и после термической обработки позволяет получить изделие с достаточно высокими прочностными характеристиками. Как и АД31 сплав АВ интенсивно упрочняется при термической обработке.

Даже естественным старением после закалки возможно повысить предел прочности по сравнению с этой характеристикой. Однако при искусственном старении существенно снижаются пластические характеристики (относительное удлинение уменьшается примерно вдвое). В отличие от сплава АД31, обладающего высокой коррозионной стойкостью как в естественно, так и в искусственно состаренном состоянии, коррозионная стойкость сплава АВ при искусственном старении существенно снижается и появляется склонность к коррозии. Снижение коррозионной стойкости сплава АВ тем больше, чем выше содержание в нем С u . С увеличением содержания в сплаве С u снижаются пластические характеристики и прочностные. Так при содержании меди 0,25% прочность уменьшается на 25%, а относительное удлинение на 90%. Поэтому для повышения коррозионной стойкости содержания меди в сплаве часто ограничивают до 0,1%. Сплав АВ удовлетворительно сваривается точечной, роликовой и аргонодуговой сваркой.

Сплав АМг6-АМг5 – относятся к системе Al – Mg – Mn . Он имеет высокие пластические характеристики, как при комнатной , так и при повышенных температурах, и обладает высокой коррозионной стойкостью в различных средах, в том числе и в морской воде. Это, а также хорошая свариваемость сплава предопределяет широкое применение его в судостроении. Несмотря на довольно значительное увеличение растворимости магния в алюминии при повышении температуры, упрочнение при закалке сплава АМг6 весьма незначительно, поэтому сплав Амг6 как и другие сплавы группы магния (АМг2, АМг3,5) относятся к термически не упрочняемым. Полуфабрикаты из сплава АМг6 поставляются обычно в отожженном состоянии. Отжиг производится при сравнительно невысоких температурах (310-335 ° C) с охлаждением на воздухе. При более высоких температурах отжига повышается склонность к коррозии, поэтому для полуфабрикатов низкотемпературный отжиг имеет особое значение. Марганец несмотря на довольно узкий диапазон содержания в сплаве существенно влияет на его механические свойства. Так при содержании Mn на верхнем пределе (0,8%) при прочих равных условиях прочностные свойства на 2-3 кг/мм 2 выше, чем при содержании М n на нижнем пределе (5%). Значительное упрочнение профилей из сплава АМг6 может быть достигнуто в результате холодной деформации. Так правка растяжением в пределах применяемых на практике степени деформации (2-3%) не оказывая заметного влияния на предел прочности профилей из сплава АМг6, значительно повышает предел их текучести. Относительное удлинение при этом понижается менее интенсивно, чем у других сплавов. Следует отметить, что такой характер изменения механических свойств профилей из сплава АМг6 при правке растяжением наблюдается независимо от условий отжига, предшествовавшего правке.

Эффект полученный при холодном упрочнении при сварке значительно уменьшается. Это сужает область применения нагартовочных полуфабрикатов, их в основном используют для изготовления элементов, скрепляемых заклепочными или болтовыми соединениями.

Сплав Д1 – относится к системе Al – Cu – Mg – Mn . Он упрочняется термической обработкой. Сплав хорошо обрабатывается в холодном и горячем состояниях. Температурный интервал горячей деформации 310-470 ° C. Охлаждение после горячей деформации на воздухе. Прессованные профили имеют пониженную коррозионную стойкость. Сплав хорошо сваривается точечной сваркой. Профили из сплава Д1 могут поставляться в закаленном и естественно состаренном, а так же в отожженном состояниях.

Сплав АК4-1 – сплав АК4-1 относится к системе Al – Cu – Mg – Ni – Fe . Он является одним из жаропрочных сплавов и вследствии этого в последнее время находит довольно широкое применение в конструкциях работающих при повышенных температурах. Сплав удовлетворительно деформируется в горячем состоянии, температурный интервал деформации 350-470 ° C. Сплав интенсивно упрочняется термической обработкой. Путем закалки и искусственного старения горячепрессованных профилей. Предел прочности может быть доведен до 43-45 кг/мм 2 и предел текучести до 30-38 кг/мм 2 . Общая коррозионная стойкость сплава невысока. Поэтому профили из него желательно подвергать анодированию или окраске. Сплав удовлетворительно сваривается.

Сплавы 1915 и 1925 – является среднелегированным термически упрочняемым, свариваемым сплавам системы Al – Zn – Mg и при определенных условиях может успешно применяться в конструкциях вместо свариваемого сплава АМг6, который уступает сплаву 1915 по прочностным характеристикам, особенно по пределу текучести. Сплав обладает хорошей устойчивостью против коррозии.

1925 применяется в виде профилей и труб для изготовления различных несварных конструкций в строительстве, машиностроении. Сплав обладает удовлетворительной коррозионной стойкостью, более высокой, чем сплав Д1. Сплавы 1915 и 1925 хорошо деформируются в горячем и холодном состояниях. Температурный интервал горячей деформации находится в пределах 350-480 ° C. К важным достоинствам этих сплавов является возможность прессования профилей и труб с высокими скоростями истечения до 15-30 м/мин. Это выше допустимых при прессовании сплавов Д1, Амг6 в 5-10 раз.

Сплавы 1915 и 1925 являются самозакаливаемыми, т.е. их прочностные характеристики мало зависят от вида закалочной среды (вода, воздух). В результате этого прессования профили с толщиной полки до 10 мм можно не подвергать закалке, т.к. охлаждение их после прессования на воздухе дает почти такую же структуру и такие же свойства, что и закалка в воде после нагрева в закалочных печах. Указанные сплавы упрочняются в процессе старения, как при комнатной, так и при повышенных температурах. Режим упрочняющей термообработки – закалка 450 + 10 ° C в воде и естественное старение не менее 30 суток или искусственное старение по режимам 100 ° C, 242+160 ° C 10 ч.

Сплав Д16 – наиболее распространенный сплав. Относится к системе А l – Cu – Mg – Mn . Он интенсивно упрочняется термической обработкой. Сплав хорошо деформируется в горячем и холодном состоянии. Горячая деформация возможна в широком интервале температур от 350 0 до 450 ° C. Деформации при комнатной температуре сплав может подвергаться как в отожженном, так и в закаленном состоянии. Механические свойства полуфабрикатов после закалки и естественного старения в значительной мере зависят от условий предварительной обработки. Так у профилей прессованных из литого слитка, прочностные характеристики после термообработки имеют максимальные значения (46-50м/мм 2 ). У профилей прессованных из предварительно деформируемой заготовки прочностные характеристики после термообработки ниже 40-43 кг/мм 2 .

Читайте также:  Самый надежный мотоблок с валом отбора мощности

Существенное влияние на механические свойства прессованных профилей оказывает величина коэффициента вытяжки при прессовании. Максимальные значения прочностных характеристик получаются при коэффициенте вытяжке равной 9-12. Поэтому крупногабаритные профили имеют, как правило более высокие показатели прочности, чем профили мелких сечений, прессуемых обычно с высокими коэффициентами вытяжки (25 -35 и более) Различные механические свойства наблюдаются так же при производстве профилей с резко отличающимися толщиной полок. Образцы вырезанные из толстых полок имеют более высокие значения, чем вырезанные из толстых полок. Прочность прессованных полуфабрикатов будет выше примерно на 10% без заметного снижения показателей пластичности, если изготавливать их из сплава с содержанием меди и марганца на верхнем пределе 4,5, 0,85% С u ,0,65-0,85% Mn и повышать температуру прессования до 430-460 ° C. Прессованные полуфабрикаты в закаленном и естественно состаренном состоянии имеют пониженную коррозионную стойкость. Сплав Д16 удовлетворительно сваривается.

Сплав В95 – один из наиболее прочных сплавов и поэтому весьма широко применяется при изготовлении профилей, удельная прочность которых является решающим фактором. Сплав относится к четырехкомпонентной системе Al – Zn – Mg – Cu и весьма интенсивно упрочняется термической обработкой. Полуфабрикаты из сплава В95 поставляются только в закаленном и искусственно состаренном состоянии. Это объясняется тем, что в естественно состаренном состоянии сплав В95 имеет пониженную коррозионную стойкость. Сплав В95 хорошо сваривается точечной сваркой, но не сваривается аргоно-дуговой и газовой . Поэтому для сочленения полуфабрикатов (толстых листов, профилей и панелей) наиболее часто применяют заклепочные соединения.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Промышленный сортамент прессованных профилей из алюминиевых сплавов весьма разнообразен. Профили подразделены на четыре группы:

1)профили сплошного сечения;

2) профили переменного сечения;

3) пустотелые (полые) профили;

Основными потребителями полых профилей из легких сплавов являются авиационная промышленность, судостроение, холодильная техника, электротехническая промышленность, радиолокация, в строительстве.

Прочностные характеристики сплавов

Сплавы низкой прочности (технический алюминий, Амц, Амг1, Амг2, Амг3, Амг4) не упрочняются термической обработкой и полуфабрикаты из них применяются в отожженном состоянии или после упрочнения в результате холодной деформации. Некоторые сплавы системы Al – Mg – Si , например АД31, АД33, так-же относятся к сплавам низкой прочности. Однако эти сплавы упрочняются термической обработкой и профили из них применяются после закалки и искусственного и естественного старения. Эти сплавы обладают хорошей свариваемостью и высокой коррозионной стойкостью.

Сплавы средней прочности можно разделить на две группы: термически неупрочняемые – Амг5, АМг6, АМг61 и термически упрочняемые – АВ, Д1, 1925, В92, Ак4, АК4-1, Д19.

Полуфабрикаты из сплавов первой группы применяются только в отожженном состоянии и обладают хорошей свариваемостью и высокой коррозионной стойкостью. Полуфабрикаты из сплавов второй подгруппы применяются после закалки и последующего естественного или искусственного старения. Сплав АВ, 1915, В92 относятся к высококоррозионным свариваемым сплавам, сплав АК, 1925 и Д1 – низкие коррозионную стойкость, и свариваемость.

Высокопрочные алюминиевые сплавы В95, Д16 интенсивно упрочняются при термической обработке. Полуфабрикаты из сплавов В95 – применяются после закалки и искусственного старения, а из сплава Д16 – обычно после закалки и естественного старения. Коррозионная стойкость сплавов этой группы невысока, поэтому приходится применять специальные методы защиты (плакирование, анодирование, нанесение лакокрасочных покрытий). Сплав Д16 обладает более высокими пластическими характеристиками и жаропрочностью. При сварке термически упрочняемых сплавов сварной шов и околошовная зона значительно ослабляются, отчего снижается коррозионная стойкость. Поэтому сплавы этой группы относятся к несвариваемым. Сборку конструкций из этих сплавов осуществляют при помощи заклепочных и реже – болтовых соединений. Для производства профилей, применяемых при изготовлении тяжелонагруженных конструкций используют сплавы В95, Д16. Для производства профилей применяемых при изготовлении среднезагрузочных конструкций, используют в основном сплавы Д1, Д20, АК4-1, АВ, 1915, 1925, Амг5,6,61. Сплав Д1 – после закалки и естественного старения. Сплавы Д20, АК4-1, АВ – после закалки и искусственного старения, сплавы 1915 и 1925 – после закалки и искусственного или естественного старения, а сплавы АМг5, АМг6, Амг61 – после отжига. Из этих сплавов делают рамы и кузова железнодорожных вагонов, сварные балки, подвесные нагруженные потолки, перегородки зданий, корпуса, палубные надстройки и переборки судов.

Для изготовления ограждающих и отделочных строительных конструкций применяются профили из сплавов АВ и АД31 в закаленном и естественно состаренном состоянии. В этом состоянии указанные сплавы обладают повышенной коррозионной стойкостью, хорошо полируются и анодируются. Кроме того, в отдельных случаях для изготовления ограждающих строительных конструкций используют сплавы АМг6 и Амг3.

Профили применяют в автомобильной промышленности, для охладителей силовых полупроводниковых приборов, в строительстве и оформлении интерьера.

1105 – рулоны на окожущивание трубопроводов теплотрасс.

Листы – изготовление рейпамных считов плакированный, для обшивки автофургонов, заводы, холодильники для обшивки (1105УМ), гофра.

АМг2 – обшивка торцевого оборудования, в строительстве для производства потолков, наружных стеновых панелей, в трубном производстве, трубы для авиастроения, трубы, вся гидравлика.

А l – пищевой – производство посуды, фляг, в различных соковыжималках, бочек, в электротехнической промышленности, корпуса бытовой техники, радиоаппаратуры, полиграфическая промышленность (овсетная печать), производители первичного алюминия (делают кожухи для анодов электролизеров), в качестве катодных листов на электроцинковых завод А5Н.

АМг5 – высокая коррозионная стойкость, судостроение обшивочные листы.

АМг6 – основной потребитель ракетостроение (топливные баки).

АМц – прочнее алюминия, где нужна коррозионная стойкость, в строительстве потолки, больше во внутреннее помещение, пищевая промышленность, корпусные детали.

АД1 – для холодильников, для газовых плит.

АД31 – профильной продукции.

АВ – авиаль ( Al , Mg , Zn ) для производства автомобильных дисков (легкость, прочность).

В95 (7075, 7021) – цинковая группа:

конструкции листы для производства авиационных контейнеров, силовые профиля для конструкции самолетов, высокая прочность.

Д1, Д16 (дюрали)- в силовых конструкциях летательных аппаратов, обшивка самолетов. Внутренние перегородки из мягкого дюраля. Прочность – 2-е место по сплавам.

Применение алюминиевых сплавов

1 Применение алюминиевых сплавов в строительстве. Наиболее ценные для строительных конструкций качествами Al являются технологичность, коррозионная стойкость и архитектурная выразительность. Для строительных конструкций применяют преимущественно алюминиевые сплавы марок АМг, АМц состояниях М (отожженный), Н2 (полунагартованный) Н (нагартованный – применяется только для заклепок из алюминиевого сплава АД1 и АМг2). Применяются следующие марки и состояния Al сплавов деформируемый Al – АД, М, АМцМ, АМг2М, АМг2Н 2 (термически неупрочняемый); АД31Т, АД31Т5, АД31Т1, 1915, 1915Т, 1925, 1925Т (термически упрочняемый) и литейный алюминий АК8.

Т1 (закаленный и естественно состаренный), Т5 (неполностью закаленный и искусственно состаренный), Т1 (закаленный и искусственно состаренный), а так же без термической обработки.

Для заклепок, поставленных в холодном состоянии применяют алюминий марок АД1Н, АМг2Н, АМг5пМ, АВТ, для болтов АМг5п, АВТ1, для сварных соединений – проволоку св. Al, св АМг3, 1557.

АМц, АМг2, АД31, АД1 в ограждающих конструкциях и в умеренно нагруженных элементах несущих конструкций; 1915 и 1925 в сварных и клепанных несущих конструкциях.

Алюминиевые полуфабрикаты . В строительстве применяют профильные и листовые полуфабрикаты. Профильные полуфабрикаты включают прессованные и холодногнутые профили, листы и ленты (в рулонах), профилированные листы (гофрированные), тисненные листы. От 60 дл 80% алюминия применяемого в строительстве составляют профильные полуфабрикаты.

Для изготовления несущих конструкций применяют профили из алюминиевых марок АД31, 1915 и 1925 и листы из Al марок АМц и АМг2. Марки 1915 и 1925 разработаны специально для несущих строительных конструкций – первая для сварных, вторая для соединяемых на заклепках и болтах.

Применение алюминиевых сплавов в судостроении

Алюминиевые сплавы находят широкое применение в судостроении для строительства корпусов судов и их надстроек, а так-же для изготовления различного судового оборудования, трубопроводов, мебели и других устройств.

Основные требования предъявляемые к алюминиевым сплавам для судостроения следующих:

1. Обеспечение предела текучести, временного сопротивления и пластических свойств, необходимых для создания прочных и надежных конструкций.

2. Удовлетворительная свариваемость, высокие прочностные свойства, надежность сварных соединений из сплавов, предназначенных для изготовления сварных конструкций.

Читайте также:  Принцип работы рычажной лебедки

3. Удовлетворительные технологические свойства, обеспечивающие возможность получения листов и профилей на металлургических заводах и изготовление конструкций на судостроительных заводах с осуществлением операций гибки, правки, резки на гильотинных ножницах и другим холодильным инструментом, обработки на станках и пр.

4. Хорошая коррозионная стойкость в морской и речной воде или других средах, в которых будет работать конструкция, при заданных скоростях движения в них сплавов также должен обладать удовлетворительной коррозионной стойкостью под напряжением в соответствующих средах.

5. Удовлетворительная сопротивляемость ударным нагрузкам. Для сваривающихся сплавов это относится и к сварным соединениям.

6. Отсутствие склонности к искрообразованию при ударах и трении деталей из алюминиевых сплавов одна о другую, что особенно важно при наличии легко воспламеняющихся сред (танкеры и пр.)

Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Алюминиевые сплавы

Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.

Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.

Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.

Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.

Происходит это несколькими способами в зависимости от вида продукта:

  1. Прокаткой, если необходимо получить листы и фольгу.
  2. Прессованием, если нужно получить профили, трубы и прутки.
  3. Формовкой, чтобы получить сложные формы полуфабрикатов.
  4. Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Физические свойства

  • Плотность — 2712 кг/м 3 .
  • Температура плавления — от 658°C до 660°C.
  • Удельная теплота плавления — 390 кДж/кг.
  • Температура кипения — 2500 °C.
  • Удельная теплота испарения — 10,53 МДж/кг.
  • Удельная теплоемкость — 897 Дж/кг·K.
  • Электропроводность — 37·10 6 См/м.
  • Теплопроводность — 203,5 Вт/(м·К).

Химический состав алюминиевых сплавов

Алюминиевые сплавы
Марка Массовая доля элементов, % Плотность, кг/дм³
ГОСТ ISO 209-1-89 Кремний (Si) Железо (Fe) Медь (Cu) Марганец (Mn) Магний (Mg) Хром (Cr) Цинк (Zn) Титан (Ti) Другие Алюминий не менее
Каждый Сумма
АД000 A199,8 1080A 0,15 0,15 0,03 0,02 0,02 0,06 0,02 0,02 99,8 2,7
АД00 1010 A199,7 1070A 0,2 0,25 0,03 0,03 0,03 0,07 0,03 0,03 99,7 2,7
АД00Е 1010Е ЕА199,7 1370 0,1 0,25 0,02 0,01 0,02 0,01 0,04 Бор:0,02 Ванадий+титан:0,02 0,1 99,7 2,7

Применение алюминия

Ювелирные изделия

В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.

Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.

Столовые приборы

По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.

Стекловарение

Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.

Пищевая промышленность

Алюминий зарегистрирован как пищевая добавка Е173. Ее используют в качестве пищевого красителя, а также для сохранения продуктов от плесени. Е173 окрашивает кондитерские изделия в серебристый цвет.

Военная промышленность

Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.

Ракетная техника

Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.

Алюмоэнергетика

В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.

Ссылка на основную публикацию
Adblock
detector