Содержание
Полимеры бутадиена (дивинила), полученные с использованием натрия в качестве инициатора процесса полимеризации, были первыми в мире синтетическими каучуками, производившимися в промышленном масштабе. Совершенствование процессов синтеза бутадиеновых, каучуков привело к созданию новых типов полимеров с улучшенным комплексом свойств.
В зависимости от способа полимеризации получают бутадиеновые полимеры с различной микроструктурой.
Промышленность выпускает дивиниловые каучуки нескольких типов:
стереорегулярные бутадиеновые каучуки СКД, получаемые в растворе с применением комплексных катализаторов; каучуки СКДЛ, получаемые в растворе с применением литиевых катализаторов, и нерегулярные каучуки СКБ, получаемые периодическим способом полимеризацией в массе с применением натрия в качестве катализатора (натрий-бутадиеновые).
Полимеризация дивинила производится в жидком или газообразном состоянии.
Жидкофазная полимеризация дивинила в присутствии металлического натрия проводится в вертикальных полимеризаторах диаметром 1, 5 м и высотой 1,5-
3,0 м , снабженных рубашкой. Для облегчения выгрузки каучука по окончании полимеризации, внутрь полимеризатора вставляется стакан из листовой стали В стакан помещаются стальные стержни, покрытые металлическим натрием. В закрытый полимеризатор загружается определенное количество жидкого дивинила.
Процесс полимеризации длится несколько десятков часов. Температура полимеризации 50-60 °С, максимальное избыточное давление в полимеризаторе-
Каучук СКБ желтого цвета с зеленым или коричневым оттенком по степени полимеризации и пластичности неоднороден, легко окисляется, содержит примеси летучих веществ, металлического натрия и его соединений.
Для улучшения технических свойств каучука его обрабатывают в вакуум-смесителе для удаления летучих веществ. Затем к нему добавляют противостаритель и стеариновую кислоту. Далее каучук подвергают обработке на рафинировочных вальцах для очистки от жестких включений и для придания большей однородности.
На рафинировочных вальцах каучук обрабатывается в зазоре между вращающимися валками и выходит из зазора в виде тонкого листа Для удаления из общей массы каучука мелких жестких частиц каучука с высокой степенью полимеризации, называемых хрящами, рафинировочные вальцы имеют валки слегка бочкообразной формы, т. е. имеют бомбировку. При такой обработке жесткие включения оттесняются к краям валков, отделяются от основной массы каучука и в виде кромки снимаются с краев валка с помощью специальных кромочных ножей. Так получается рафинированный каучук.
При обработке каучука на рафинировочных вальцах при зазоре больше 0,1 мм получается брекированный каучук. Путем обработки каучука на вальцах при еще большем зазоре получается вальцованный каучук.
Упаковка каучука СКБ производится в мешки, пропитанные нитролаком, или в прорезиненные мешки по 30 кг .
Каучук СКБ в зависимости от способа полимеризации выпускают двух типов: стержневой и бесстержневой. В зависимости от пластичности этот каучук выпускается следующих марок:
бесстержневой—20, 25, 30, 35, 40, 45б, 50б, 55б;
стержневой—45с, 50с, 55с, 60, 66.
По характеру обработки каучук СКБ делят на следующие виды: рафинированный, брекированный и вальцованный.
Марки каучука обозначают числом, соответствующим пластичности. Например, каучук марки 40 имеет пластичность в пределах 0,36—0,40 (по Карреру)*.
Для обозначения способа полимеризации, метода обработки, содержания мягчителей и назначения каучука к числовому обозначению марки каучука прибавляются буквы.
Буквы, стоящие за числовым обозначением марки каучука, означают:
с—стержневой полимеризации; б—бесстержневой полимеризации; р—рафинированный; к—брекированный; в—вальцованный;
Д—предназначенный для резин с повышенными диэлектрическими свойствами; Э—предназначенный для эбонитовых и баллонных изделий;
Щ—для резиновых изделий, соприкасающихся с пищевыми продуктами.
Буква П, стоящая перед числовым обозначением марки, означает, что каучук содержит полидиены.
Каучук СКВ получается путем каталитической полимеризации дивинила в присутствии калия. В зависимости от пластичности его подразделяют на марки: 25,30,35, 40, 45, 50, 55. В зависимости от способа обработки различают рафинированный и вальцованный каучуки. СКВ отличается повышенной морозостойкостью.
Каучук СКБМ получают путем полимеризации дивинила бесстержневым способом в присутствии катализатора лития. Каучук СКБМ, в зависимости от пластичности, выпускается следующих марок: 35, 40, 45, 50 и 55. В зависимости от способа обработки различают каучуки рафинированный и вальцованный.
Этот каучук отличается еще более высокой морозостойкостью по сравнению с каучуком СКВ.
Каучук СКД получают при полимеризации дивинила в растворе в присутствии комплексного катализатора типа катализатора Циглера (триалкилалюминий+четыреххлористый титан).
В зависимости от состава каталитического комплекса СКД могут существенно различаться по структуре и свойствам. СКД-1, полученный в присутствии «титановой» каталитической системы (TiI4 + ALR3), содержит 87—95% цис-1,4-звеньев. СКД-2, полученный на «кобальтовой» каталитической системе (CоCI2 + ALR2CI), содержит 93—98% цис-1,4-звеньев. Разработаны каталитические системы с использованием литийалкилов, позволяющие регулировать содержание структуры-1,2 в цепи полимера. Таким образом, полимеризацией в растворе получают разветвленный бутадиеновый каучук СКБСР, содержащий около 65% 1,2-звеньев.
По основным техническим свойствам он приближается к натуральному каучуку.
Мономеры и растворитель, применяемые при полимеризации, должны отличаться высокой степенью чистоты, не содержать воды, кислорода, а также активных соединений кислорода, серы и азота.
Назначение растворителя заключается в обеспечении жидкой реакционной среды, что облегчает в процессе полимеризации регулирование температуры, диффузию мономера, перемешивание и выгрузку полимера. Образующийся полимер растворяется в реакционной среде по мере его образования. Реакцию заканчивают, — когда содержание полимера в реакционной массе достигнет 25%. По окончании полимеризации производят дезактивирование и удаление катализатора. После этого отгоняют избыток мономера и растворитель, каучук сушат и упаковывают в кипы. Растворитель регенерируют и используют повторно.
При применении в качестве катализатора лития (вместо комплексного катализатора) получают каучук СКЛД с меньшим содержанием цис-1,4-звеньев (35—40%).
Разветвленность молекулярных цепей в СКД и СКДЛ практически -отсутствует.
В процессе полимеризации можно регулировать молекулярную массу полимера в широких пределах. На заключительных стадиях производства в полимер вводят противостаритель: фенил-β-нафтиламин или неокрашивающий противостаритель фенольного типа. Выпускают СКБ специальных марок для резин, применяемых в пищевой и медицинской промышленности. Они заправлены вазелиновым маслом.
Физические свойства.
Плотность бутадиеновых каучуков 900— 920 кг/м 3 . Температура стеклования зависит от микроструктуры и. находится в пределах для СКД от —95 до —110 0 С, для СКДЛ от —90 до —105 °С и для СКБ от —48 до — 54 °С.
Бутадиеновые каучуки, содержащие свыше 80% структуры цис-1,4, способны кристаллизоваться при низких температурах. Температура максимальной скорости кристаллизации СКД от —55 до —60 °С, при этом максимальная степень кристаллизации достигает 60%. В зависимости от регулярности структуры температура плавления кристаллической фазы колеблется от —3 до-—30 °С. При обычной температуре каучук аморфен, а резины на его основе не кристаллизуются при деформации и поэтому имеют невысокую прочность при комнатной и повышенной температурах. В процессе кристаллизации резины на основе СКД затвердевают. Резины на основе СКДЛ обладают повышенной морозостойкостью, снижающейся по мере кристаллизации каучука.
Вследствие малого содержания посторонних примесей резины на основе бутадиеновых каучуков отличаются высокими диэлектрическими свойствами, их удельное объемное сопротивление 10 12 —10 13 Ом-м. Малое содержание в смеси некаучуковых компонентов определяет незначительное набухание в воде. Выпускают СКБ специальных марок, содержащие не более 0,2% щелочи, для резин с повышенными диэлектрическими, свойствами. Параметр растворимости каучука δр 16,6 (МДж/м 3 ) 1/2 . Каучук хорошо растворяется в тех же растворителях, что и натуральный каучук.
Технологические свойства.
Все бутадиеновые каучуки выпускаются с определенной пластичностью (от 0,20 до 0,66) с интервалом 0,05 ед. Соответственно марки этих каучуков записывают следующим образом: СКБ-20, СКБ-45, СКБ-60 и т. д. Цифры обозначают увеличенное в 100 раз значение пластичности. При переработке СКВ очень мало деструктируются и хорошо смешиваются с ингредиентами, резиновые смеси на. их основе легко формуются.
В зависимости от значения вязкости по Муни при 100 °С выпускаемые каучуки СКД относят к одной из трех групп:
Группа . | I | II | III |
Вязкость по Муни, усл. ед. | . 30—50 | 40—50 | 51—60 |
Таблица 3 -Характеристика некоторых марок бутадиеновых каучуков
Показатели | СКД-1 | СКД-2 | СКДЛ | СКБ |
Содержание звеньев, % цис-1,4. | 87—95 | 93—98 | 35—40 | 10—15 |
транс-1,4. | 1—7 | 2—-4 | 45—55 | 15—25 |
1,2. | 3-6 | 2 -_4 | 10—15 | 65—70 |
Непредельность, % . | 95—98 | 95—98 | 98 | 85 |
Среднечисловая молекулярная масса, тыс. | 70—280 | 70—230 | 80—270 | 85—200 |
Mw /Mn. | 1,3—4,2 | 3—5 | 1,1—2,7 | 15—20 |
Содержание, % | ||||
золы, не более . | 0,4 | 0,4 | 0,1 | 2,5—4,5 |
летучих, не более . | 0,5 | 0,5 | 0,5 | 0,5 |
железа, не более | 0,007 | 0,007 | 0,002 | |
меди, не более . | 0,0002 | 0,0002 | 0,0001 | — |
щелочи. | — | — | — | 0,15—1,2 |
стабилизатора . | 1,0—1,5 | 1,0—1,5 | 0,3—0,6 | 0,5—1,0 |
Незначительная разветвленность молекулярных цепей и небольшое изменение вязкости полимеров с температурой (малая термопластичность) определяют высокую хладотекучесть СКД при его хранении и транспортировании. Узкое молекулярно-массовое распределение, малая когезионная прочность и низкая адгезия каучука к металлу определяют его плохие технологические свойства. При обработке на вальцах при температуре выше 40 °С каучук плохо обволакивает поверхность валков и может рассыпаться в крошку.
Для характеристики способности СКД к переработке определяют его вальцуемость, т. е. величину критического зазора между валками лабораторных вальцов в миллиметрах, при котором стандартная резиновая смесь при температуре 80 °С начинает отставать от валков и самопроизвольно с них сходить.
Чем больше величина критического зазора, тем лучше вальцуемость. Вальцуемость уменьшается с увеличением М и улучшается с расширением ММР.
Для СКД II группы вальцуемость составляет менее 0,5 мм, а для СКД I группы с более широкими ММР — от 0,51 до 2,0 мм. Для улучшения технологических свойств на заключительных стадиях производства СКД в него можно вводить до 50 масс. ч. высокоароматических углеводородных масел. Введение масел существенно понижает вязкость каучука (примерно на 1 усл. ед. по Муни при введении 1 масс. ч. масла ПН-6), и для поддержания вязкости на должном уровне исходный полимер должен иметь большую М (или вязкость по Муни, примерно равную 60—110).
Маслонаполненные бутадиеновые каучуки (например, СКД-М-25, где число показывает содержание масла в полимере в процентах), обладают улучшенными технологическими свойствами и находят все большее применение в промышленности. Отсутствие низкомолекулярных фракций придает СКД высокую способность к наполнению маслом и техническим углеродом.
Из-за плохих технологических свойств стереорегулярные бутадиеновые каучуки обычно применяют в смеси с НК, СКИ или бутадиен-стирольными (БСК) каучуками. Максимальное количество СКД П группы, применяемого в смеси с другими каучуками, составляет 30—40 масс, ч., а СКД I группы — 40—50 масс. ч.
Вулканизация. По скорости вулканизации бутадиеновые каучуки лишь немного уступают НК и СКИ. Они вулканизуются в присутствии серы и обычно применяемых ускорителей вулканизации. Наиболее эффективны в смесях с бутадиеновыми каучуками сульфенамидные ускорители.
Так как вулканизаты бутадиеновых каучуков не способны кристаллизоваться при деформации, то без усиливающих наполнителей они имеют низкие показатели механических свойств. Поэтому в рецептурах стандартных смесей содержится в качестве усиливающего наполнителя технический углерод. Ниже приведены рецептуры стандартных смесей на основе бутадиеновых каучуков:
Содержание масс. ч.
Смеси готовят на лабораторных вальцах при температуре 30— 40 °С в течение 23 мин для СКБ и 30 мин для СКД. Вулканизуют приготовленные смеси при температуре 143 °С в течение 40— 60 мин. Вулканизаты на основе СКД II группы и СКБ должны иметь следующие характеристики:
Показатели | СКД (II группа) | СКБ-25 | СКБ-60 |
Прочность при растяжении, МПа, не менее | 19,0 | 14,5 | 12,5 |
Напряжение при удлинении 300%, МПа, не менее. | 7,0 | _ | |
Относительное удлинение, %, не менее . | 470 | 500 | 650 |
Остаточное удлинение, %, не более . | — | 50 | 70 |
Эластичность по отскоку, %, не менее . | 49 | 30- | -35 |
При отсутствии в рецептуре технического углерода (в ненапол-ненных смесях) получаются вулканизаты с пределом прочности при растяжении не выше 3,0 МПа.
Свойства вулканизатов.
Резины на основе СКБ отличаются невысокими прочностными свойствами и уступают по этому показателю резинам на основе других синтетических каучуков.
Вследствие малого содержания двойных связей в основной цепи макромолекул полимера резины на основе СКБ характеризуются высоким сопротивлением тепловому старению и применяются благодаря этому свойству для производства ряда специальных технических изделий, утратив свое значение как каучуки общего назначения. Аналогичными свойствами обладают разветвленные каучуки растворной полимеризации СКБСР. Большое значение имеют также натрий-бутадиеновые каучуки для производства изделий, применяемых в пищевой и медицинской промышленности.
Резины на основе стереорегулярных бутадиеновых каучуков СКД и СКДЛ отличаются рядом ценных свойств и прежде всего высокой эластичностью, морозостойкостью и износостойкостью. В зависимости от условий испытания резины на основе СКД превосходят по износостойкости резины на основе НК, СКИ-3 и БСК в 1,5—2 раза. Следует, однако, учитывать, что для резин на основе СКД характерен низкий коэффициент трения. Совмещение СКД с другими каучуками приводит к получению резин с высокой динамической выносливостью и износостойкостью. Такие резины находят широкое применение в шинной промышленности , для производства конвейерных лент, клиновых ремней, изоляции кабелей и др. Небольшие добавки СКД применяются в резинах на основе полярных каучуков для придания им морозостойкости.
ООО "ДомРезин"
тел.: +7 (812) 953-52-84
E-mail: domrezin@inbox.ru
г. Санкт-Петербург
БУТАДИЕНОВЫЕ КАУЧУКИ
Бутадиеновые каучуки получают полимеризацией бутадиена в присутствии различных катализаторов. В зависимости от типа применяемых катализаторов и способа полимеризации получаются каучуки с разной микроструктурой и техническими свойствами.
Все бутадиеновые каучуки подразделяются на:
К стереорегулярным относятся каучуки, в молекулах которых не меньше 85% мономерных групп. К ним относятся бутадиеновые каучуки, получаемые с помощью комплексных катализаторов Циглера-Натта кобальтового, никелевого и титанового типов, а также каучук, получаемой с помощью литий-органического катализатора.
К бутадиеновым и эмульсионным каучуком нестереорегулярного строения относятся каучуки, получаемые в присутствии щелочных металлов.
Нестереорегулярные бутадиеновые каучуки
Нестсреорегулярный и натрий-бутадиеновый каучук (СКВ), получаемый по способу С. В. Лебедева, является первым синтетическим каучуком, производство которого было организовано в крупных масштабах в нашей стране. Долгое время он был основным каучуком общего назначения и вместе с натуральным применялся при изготовлении разнообразных резиновых изделий.
СКВ получают полимеризацией бутадиена в массе в присутствии металлического натрия. Полимеризация длится несколько десятков часов при температуре 50-60 о С и максимальном давлении в полимеризаторе 0,9 МПа.
Цвет СКВ— желтый с зеленоватым или коричневатым оттенком; по степени полимеризации и пластичности каучук неоднороден, легко окисляется, содержит примеси летучих веществ, а также металлического натрия и его соединений.
Для улучшения технических свойств каучука его обрабатывают в вакуумсмесителе с целью удаления летучих веществ. Затем к нему добавляют противостаритель и стеариновую кислоту. Далее каучук обрабатывают на рафинировочных пальцах для очистки от жестких включений и придания ему большей однородности.
На рафинировочных вальцах каучук обрабатывается в зазоре между вращающимися валками и выходит из зазора в виде тонкого листа.
Для удаления из общей массы каучука мелких жестких частиц каучука с высокой степенью полимеризации, называемых хрящами, валки рафинировочных вальцов имеют слегка бочкообразную форму т. е. имеют бомбировку. При обработке каучука жесткие включения оттесняются к краю валков, отделяются от основной массы каучука и в виде кромки снимаются с краев валка с помощью специальных кромочных ножен. Так получается рафинированный каучук.
При обработке каучука на рафинировочных вальцах с зазором между валками больше 0,1 мм получают брекированный каучук, а при еще большем зазоре -вальцованный каучук.
СКВ упаковывают в мешки, пропитанные нитролаком, или в прорезиненные мешки.
В зависимости от способа полимеризации выпускают СКВ двух типов: стержневой и бесстержневой, пластичность получаемых каучуков находится в пределах от 0,1 до 0,66.
Марки каучука обозначают числом, соответствующим пластичности. Например, пластичность каучука марки 40 составляет 0,36—0.40.
Для обозначении способа полимеризации, метода обработки, содержания мягчителей и назначения каучука к числовому обозначению марки каучука прибавляется буквы.
Буквы, стоящие за числовым обозначением марки каучука, означают:
с — стержневои полимеризации,
б — бесстержневой полимеризации,
д — предназначенный для резин с повышенными диэлектрическими свойствами,
э — предназначенный для эбонитовых и баллонных изделий,
щ — для резиновых изделий, соприкасающихся с пищевыми продуктами.
Каталитической полимеризацией бутадиена в присутствии калия получают каучук СКВ, отличающийся повышенной морозостойкостью.
Полимеризацией бутадиена бесстержневым способом в присутствии лития в качестве катализатора получают каучук СКБМ. Этот каучук обладает еще более высокой морозостойкостью, чем СКВ.
Применение. В связи с производством стереорегулярных бутадиеновых каучуков СКБ потерял свое техническое значение, применение его значительно сократилось по сравнению с другими каучуками. Причина этого состоит в том, что стереорегулярные бутадиенииые каучуки имеют более ценные технические свойства, они в большей степени отвечают современным требованиям резинового производства, получаются по непрерывной схеме при меньших затратах ручного труда.
В настоящее время СКБ, СКВ, СКБМ применяются как
специального назначения и используются при изготовлении некоторых пищевых, морозостойких, кислотощелочестоиких резин, а также эбонитовых и асбестовых изделий. В дальнейшем предполагается заменить их в производите этих изделий на бутадиеновые каучуки типа СКБС (линейной структуры) и СКБСР (разветвленной структуры), которые получаются более совершенной растворной полимеризацией. Их вулканизаты отличаются высокой стойкостью к термоокислительной деструкцией к тепловому старению и по комплексу физикомеханических свойств близки к резинам из СКБ.
Стереорегулярные бутадиеновые каучуки
Стереорегулярные бутадиеновые каучуки получают полимеризацией бутадиена в растворителях в присутствии комплексного катализатора.
Непрерывная полимеризация производится в батарее полимеризаторов при температурах 25—30°С и давлении до 1,0 МПа в течение 4 — 8 ч. После удаления основной массы непрореагировавшего мономера и части растворителя в вакуумиспарителе к полимеризату добавляется антиоксидант (противостаритель), затем полимеризат подвергают водной дегазации. Обработкой паром отделяют растворитель от каучука, при этом удаляется большая часть оставшихся продуктов распада катализатора, растворившихся в воде.
Стереорегулярные бутадиеновые каучуки выпускают в виде брикетов массой около 30 кг, завернутых в полиэтиленовую пленку и упакованных в четырехсложные бумажные мешки.
Свойства
Относительно высокая гибкость макромолекули подвижность макромалекулярных цепей СКД является причиной более низкой температуры стеклования по сравнению с температурой стекловании натурального канчуки. Температура стеклования промышленного СКД находится в пределах от -105 до — 110°С с повышением содержания 1,4-звеньев она понижается.
Бутадиеновые каучуки при содержании более 80% цис-звеньев способны кристаллизоваться при охлаждении. Максимальная скорость кристаллизации СКД наблюдается при температурах от -55 до -60 о С. При уменьшении содержания цис-1,4-звеньев, молекулярной массы каучука и в результате вулканизации скорость и степень кристаллизации каучуки понижаются.
Каучуки СКД разных марок отличаются вязкостью, вальцуемостью и физико-механическими свойствами вулканизатов (наполненных техническим углеродом).
Резины на основе СКД обладают рядом ценных свойств:
— повышенной износостойкостью и исключительно высокой морозостойкостью. Недостатком СКД является его малая когезионная прочность (прочность в невулканизированном состоянии) и хладотекучесть, т.е. повышенная текучесть при нормальной температуре и сравнительно малых нагрузках, что затрудняет получение и хранение каучука и резиновых смесей на его основе. Кроме того, резиновые смеси на оспине СКД обладают плохими технологическими свойствами из-за узкого ММР, низкой адгезии к металлу и высокой эластической восстанавливаемости, особенно при повышенных температурах.
На свойства СКД, как и свойства других каучуков, большое влияние оказывают параметры молекулярной структуры:
С увеличением молекулярной массы каучука жесткость и вязкость повышаются, а пластичность и вальцуемость ухудшаются. Одновременно повышаются условное напряжение резин (при удлинении 300%), прочность при растяжении, эластичность по отскоку и снижаются относительное и остаточное удлинение, истираемость, теплообразование и сопротивление разрастанию пореза.
Молекулярная масса, разветвленность полимерных цепей промышленного СКД колеблются в узких пределах, в то же время ММР в зависимости от степени регулирования может меняться весьма существенно. С увеличением полидисперсности каучука заметно снижаются напряжение при 300%-ном удлинении, прочность при растяжении, твердость и эластичность по отскоку наполненных резин, что объясняется уменьшением густоты вулканизационной сетки, а относительное удлинение, теплообразование при многократном сжатии и истираемость возрастают.
В то же время с увеличением полидисперсности каучука улучшаются технологические свойства саженаполненных смесей, уменьшается продолжительность их изготовления, температура смешения и вязкость резиновых смесей. Когезионная прочность каучука мало зависит от ММР и в основном определяется молекулярной массой.
Бутадиеновые каучуки хорошо растворяются в ароматических и хлорсодержащих углеводородах, бензине и циклогексане, хуже растворяются в ароматических углеводородах. Резины на их основе имеют низкую стойкость к действию масел, растворителей и топлив.
Эти каучуки и резины на их основе благодаря подвижности звеньев обладают несколько большей газопроницаемостью по сравнению с натуральном и бутадиен-стирольными каучуками.
По стойкости к тепловому старению резины на основе СКД уступают резинам на основе бутадиенстирольного каучука, но превосходят резины на основе натурального каучука, они отличаются также хорошей эластичностью, усталостной выносливостью и малым теплообразованием при многократных деформациях. Но износостойкости резины на основе СКД превосходит резины на основе других каучуков общего назначения благодаря большему взаимодействию каучука с активными наполнителями и пониженному коэффициенту трения.
СКД практически не пластицируются. Эффективность пластикации при обработке на промышленном оборудовании незначительна. При более высоких температурах эффект пластикации значительно возрастает, одновременно наблюдается структурирование каучука.
Применение
СКД обычно применяют в сочетании с другими изопреновым синтетическим каучуком, натуральным, а также бутадиен- стирольными каучуками, которые улучшают технологические свойства резиновых смесей, предназначенных для изготовления шин, транспортерных лепт, изоляции электрических кабелей, морозостойких изделий, изделий с высокой динамической выносливостью и износостойкость и др.
Бутадиеновый каучук марки СКД-ЛР получают полимеризацией в растворе в присутствии литиевого катализатора, в него вводят нетемнеющий противостаритель. Он обладает хорошей морозостойкостью, нетоксичен, не имеет неприятного запаха и поэтому используется для изделий, применяемых в пищевой промышленности, медицине, санитарии.
Химической промышленностью в наше время производится несколько видов каучуков. Одним из самых востребованных при этом является бутадиеновый. Каучук этой разновидности имеет множество достоинств. Но конечно, есть у него и некоторые недостатки.
Немного истории
Натуральный каучук в Европу, как известно, был привезен из Америки Христофором Колумбом. Обнаружил это интересное вещество великий мореплаватель на острове Гаити. Местные индейцы делали из него плотные мячи для игр.
В первое время каучук в Европе, к сожалению, никого особо не заинтересовал. Однако позднее это вещество стало применяться довольно-таки широко. К примеру, во Франции из него делали подтяжки для штанов. В Англии с использованием каучука шили водонепроницаемые пальто.
В 1839 г. американский исследователь Чарльз Гурдер впервые сделал из этого материала резину. Хотя до этого изобретатель и пытался найти новые методы использования каучука, получилось у него это совершенно случайно. Однажды Гурдер чисто механически положил пластинку исследуемого материала на печку поверх уже находившегося там куска серы. Так впервые и получился материал с интересными свойствами, в последующем названный резиной.
Необходимость синтезирования каучука
Добывают каучук в Америке из дерева гевеи. В Европе и России эта тропическая культура, к сожалению, не растет. Природных источников получения резины в Северном полушарии попросту нет. Именно поэтому в конце XIX — начале XX века в России и Европе встала острая потребность синтеза искусственного каучука для получения резины, которая к тому времени уже была широко распространена и использовалась повсеместно.
Виды искусственного каучука
Со временем было создано множество технологий получения этого нужного материала. Видов каучука на настоящий момент существует несколько. К примеру, химической промышленностью выпускаются такие его типы, как винилпиридиновый, фторсодержащий, вспененный, кремнийорганический. Но наиболее востребованным является все же бутадиеновый. Каучук именно этой разновидности и был когда-то впервые получен искусственно (в 1932 году группой инженеров под руководством А. Лебедева).
Как делают
Гевей в нашей стране нет. Однако для получения синтетического каучука также используются природные материалы. В основном это зерно и картофель. Сбраживая эти с/х продукты, получают этиловый спирт. Последний служит исходным сырьем при производстве такого вещества, как бутадиен-1.3. Для получения каучука этот компонент подвергают полимеризации.
Исходное вещество
Представляет собой 1.3-бутадиен бесцветный газ, формула которого выглядит следующим образом: СН2=СН—СН=СН2. По-другому его называют дивинил. По сути, бутадиен-1.3 — это ненасыщенный углеводород, представитель группы диеновых. Характерной особенностью этого газа, помимо всего прочего, является очень неприятный запах.
Полимеризация бутадиена для получения собственно каучука производится на стереоскопических катализаторах. Сама реакция протекает с присоединением молекул друг с другом в 1,4 или 1,2 положении.
Физические характеристики
Для синтеза конечного продукта применяют обычно содержащий более 99% основного вещества бутадиен. Бутадиеновый каучук же отличается такими техническими характеристиками:
вязкость по Муни — 30-35;
температура вулканизации — 140-160 С;
плотность — 900-920 кг/м;
основной агент вулканизации — сера;
наполнители при вулканизации — технический углерод;
пластификаторы — минеральные масла.
Разновидности
Подразделяется бутадиеновый каучук на два основных типа:
Первую разновидность материала выпускают в виде брикетов. Получают стереорегуляторные каучуки:
с помощью катализаторов Циглера-Натта (никелевого, кобальтового и титанового типов);
В молекулах таких каучуков имеется не менее 85% мономерных групп. Нестереорегуляторные материалы делают в присутствии щелочных металлов. Чаще всего это металлический натрий. Именно такой материал (СКВ) и был получен когда-то впервые А. Лебедевым.
Бутадиеновый каучук: формула
Получать этот материал можно, таким образом, с использованием разных катализаторов. Формула бутадиенового каучука выглядит в любом случае следующим образом:
nCH 2 = СН – СН = CH 2 ® (– СН 2 – СН = СН – СН 2 – ) n, где n может принимать значения в несколько тысяч.
Способ получения нестереорегуляторного каучука СКВ
Изготавливают такой материал, как уже упоминалось, путем полимеризации бутадиена в присутствии металлического натрия. Длится эта процедура несколько часов при давлении в 0.9 МПа и температуре 50-60 С.
Улучшают свойства полученного каучука путем дополнительной обработки в вакуумсмесителе для удаления летучих веществ. Далее к материалу добавляют стеариновую кислоту и противостаритель. На заключительном этапе каучук обрабатывают на рафинировочных пальцах. Это позволяет придать материалу большую однородность и очистить его от разного рода жестких ненужных включений.
В зависимости от того, какой будет выбран зазор на рафинированных пальцах, можно получить брикетированный или вальцованный каучук. Упаковывают полученный материал в прорезиненные мешки. Иногда последние также пропитывают нитролаком.
Как маркируется СКВ
Итак, как получить бутадиеновый каучук нестереорегуляторный, мы выяснили. Теперь давайте посмотрим, как маркируется эта разновидность материала. Пластичность получаемого методом полимеризации нестереорегуляторного каучука СКВ может варьироваться в пределах 0.1-0.66. Исходя из этого, и маркируется материал. К примеру, каучук 40 будет иметь пластичность 0.36-0.4. Также маркировка материала содержит такие сведения, как:
использованный способ полимеризации;
Буквы в маркировке материала обозначают:
с — стрежневая полимеризация;
к — брикетированный материал;
Из каучука СКВ, маркированного буквой «д», получают резины с повышенными диэлектрическими свойствами. Материал, на этикетке которого присутствует «э», предназначен для изготовления баллонных и эбонитовых изделий. Буква «щ» в маркировке каучука означает то, что его можно использовать для изготовления резины, соприкасающейся с пищевыми продуктами.
Синтез стереорегуляторного материала
Изначально разновидность СКВ использовалась очень широко. Однако с изобретением технологии изготовления стереорегуляторного каучука, применение ее значительно сократилось. Дело в том, что стереорегулятрный бутадиеновый каучук отличается большей эластичностью и имеет лучшие технические характеристики.
Совершенствование процессов изготовления материала привело к получению новых его форм с улучшенными свойствами. Стереорегуляторный бутадиеновый каучук — полимер, изготавливать который можно с использованием комплексных катализаторов (СКД) или литиевых (СКДЛ).
Делают такие материалы по непрерывной схеме и с минимальными затратами ручного труда. При производстве наиболее распространенной разновидности СКД полимеризация производится в специальной батарее в присутствии комплексного катализатора при температуре 25-30 С и давлении 1 МПа. Общее время изготовления каучука этой разновидности составляет 4-8 часов.
На одном из этапов материал дополнительно обрабатывается в вакуумоиспарителе. Здесь к полимеризату добавляется антиоксидант. Далее материал проходит процедуру водной дегазации. Остатки растворителя от каучука отделяют путем обработки паром.
Поставляются на рынок стереорегуляторные бутадиеновые каучуки обычно в брикетах по 30 кг, завернутых в полиэтиленовую пленку.
Сферы использования
Таким образом, имеет очень даже хорошие бутадиеновый каучук свойства. И применение его поэтому оправдано при изготовлении самой разной эластичной продукции. Каучуки нестереорегуляторные бутадиеновые чаще всего используются при производстве:
резин пищевых, морозостойких, кислотощелочестойких;
эбонитовых и асбестовых изделий.
Стереорегуляторные материалы этого типа используют при изготовлении:
шин для автомобилей;
подошв обуви и перчаток;
транспортерных лент для элеваторов, предприятий легкой и тяжелой промышленности;
изоляторов для электрических проводов и кабелей;
резиновых изделий с высокой динамичной износостойкостью;
К безусловным преимуществам этого каучука относят его нетоксичность и отсутствие неприятного запаха. Поэтому очень часто такой материал применяют также для изготовления изделий, используемых в медицине и пищевой промышленности.
Как получают резину
Чаще всего для производства этого материала используются стереорегуляторные каучуки. Для получения резины в них добавляют обычно, как уже упоминалось, технический углерод. Изготавливается резина методом вулканизации. Бутадиеновый каучук, формула которого была представлена выше, в сравнении с некоторыми другими разновидностями, имеет ряд недостатков:
низкую когезионную прочность;
плохую адгезию к металлу.
Резиновые смеси на их основе дают сильную усадку. Поэтому в процессе производства такой материал часто смешивают с изопреновыми, стирольными и другими видами каучуков.