Чугун и его свойства

Чугун является соединением железа с углеродом. Среди главных свойств можно выделить массу, форму, объем и размещение графитных примесей. В состоянии термодинамического равновесия строение сплавов железа с углеродами можно описать диаграммой. Во время модифицирования состава изменяется:

• температура эвтектики ( о С) Т = 1135 + 5*Si – 35*P – 2*Mn + 4*Cr;
• насыщенность эвтектики углеродом (%) С = 4,3 – 0,3*(Si+P) – 0,04*Ni – 0,07*Cr;
• температура эвтектоидного превращения ( о С) T = 723 + 20*Si + 8*Cr – 30*Ni – 10*Cu – 20*Mn;
• насыщенность эвтектоида углеродом (%) C = 0,8 – 0,15*Si – 0,8*Ni – 0,05*(Cr+Mn).

Размещение критических точек зависит от степени нагрева – в случае охлаждения они перемещаются немного вниз. Установлены максимально точные простые формулы для подавляющего числа марок чугуна, не содержащего легирующих компонентов:

• насыщенность эвтектики углеродом C = 4,3 – 0,3*(Si+P);
• насыщенность эвтектоида углеродом C = 0,8 – 0,15*Si.

Воздействие соединений на строение можно увидеть в таблице 1. Коэффициенты, определяющие условное графитизирующее воздействие, можно брать во внимание лишь в случае наличия углерода (C) (около 3 %) и кремния (Si) (около 2 %).

Таблица 1. Ориентировочное влияние элементов на структуру чугуна

Относительное графитизирующее действие

На основную металлическую массу

В твердом состоянии

Уменьшение содержания перлита

Увеличение количества и укрупнение

Уменьшение содержания перлита

Увеличение количества и укрупнение

более 0,8
более 1,0

Размельчение перлита
Образование сернистого марганца

Слабое размельчение
То же, но уменьшение количества

Образование сернистого марганца

То же, но уменьшение количества

Увеличение количества и слабое размельчение

Уменьшение количества и слабое размельчение

Размельчение перлита. Образование игольчатой структуры

Уменьшение количества. Значительное размельчение

Уменьшение количества. Значительное размельчение

Уменьшение содержания перлита

Увеличение количества и укрупнение


Физико-механические свойства

Самые важные показатели физико-механических свойств микроструктуры чугуна можно найти в табл. 2, физических свойств – в табл. 3. Указанный в 3-й табл. удельный вес способен сильно отклоняться в связи с колебаниями объема соединенного углерода и изменениями количества пор. Удельная масса чугуна в момент его плавления равняется 7 ± 0,1 г/см 3 . При добавлении различных простых примесей она снижается. На указанный в таблице 3 коэффициент теплового расширения влияет строение чугуна.

Сильный невозвратимый прирост объема происходит в случае изменения температуры, при которой в физической системе происходит равновесный фазовый переход. Показатель может достичь 30 %, но зачастую он не превышает 3 % при разогреве до 500 о С. Приросту объема способствуют компоненты, образующие графиты, а мешают – компоненты, образующие карбиды, а также покрытие чугуна методом эмалирования, металлизирования и гальванизации.


Таблица 2. Физические и механические свойства структурных, составляющих нелегированного чугуна

Удельный вес Г/см 3

Коэффициент теплового линейного расширения a*10 – в 1/ о С при температурах 20 -100 о С

Теплоемкость в кал/Г* o С при температуре в о С

Теплопроводность в кал/см*сек о С

Электросопротивление в мкОм 9 см

Предел прочности при растяжении σ в в кГ/мм 2

Показатель теплоемкости чугуна конкретного состава можно установить по закону смешения, используя информацию, приведенную в таблице 2. Она может равняться 0,00018 ккал/(г• о С) при преодолении температурой порога фазового перехода, вплоть до температуры плавления. После преодоления температуры плавления – 0,00023 ± 0,00003 ккал/(г· о С). Тепловой эффект при застывании равняется 0,055 ± 0,005 ккал/г, а в случае эвтектоидного распада аустенита обуславливается объемом включенного перлита, и может достигать 0,0215 ± 0,0015 ккал/г при эвтектоидной концентрации 0,8 % Ссв.

Теплоемкость единицы объема этого вещества может использоваться для укрупненных вычислений: для чугуна в твердом состоянии – приблизительно 0,001 ккал/см 3 · о С, а в жидком состоянии – 0,0015 ккал/см 3 · о С.

Теплопроводность нельзя установить по закону смешения; указанные в табл. 2 ее показатели для элементов, при росте их размеров в дисперсных системах, понижаются. Типичные показатели теплопроводности указаны в табл. 3. Роль входящих в чугун компонентов в изменении теплопроводности можно увидеть на отклонениях уровня графитизации. Показатели теплопроводности железа снижаются при повышении объема входящих в него различных добавок.

Чугун в расплавленном состоянии имеет теплопроводность около 0,04 кал/см·с· о С.
С использованием укрупненных вычислений, коэффициент теплопроводности чугуна в твердом состоянии приравнивается к его теплопроводности, а в расплавленном состоянии – к 0,3 мм 2 /с.

Таблица 3. Типичные физические свойства чугуна

Примечание, с повышением температуры: "+" – повышается; "-" – понижается

Удельный вес Г/см 3

Коэффициент теплового линейного расширения a·10 -в 1/ о С, при температурах 20-100 о С

Действительная усадка в %

Теплопроводность в кал/см·сек о С

Динамическая вязкость при температуре ликвидус дин·сек/см 2

Поверхностное натяжение в дин/см 2

Электросопротивление в Мк · ом · см

Теплоемкость в кал/Г · о С

Коэрцитивная сила в э

Остаточный магнетизм в гс


Гидродинамические свойства

Показатели абсолютной вязкости можно найти в табл. 4. Вязкости свойственно снижаться при росте доли марганца, а также в случае понижения части серы и добавок неметаллического происхождения, обусловленного температурными показателями.

Снижение показателей вязкости и соотношение абсолютных температур опыта и момента затвердевания находятся в прямой зависимости. Во время перехода температуры начала затвердевания, показатели вязкости стремительно возрастают.

Данные о поверхностном натяжении чугуна для проведения укрупненных вычислений можно взять из таблицы 3. Оно возрастает со снижением доли углерода и стремительно меняется при добавлении в состав компонентов неметаллического происхождения.

Для определения электрических характеристик можно воспользоваться законом Курнакова. Приблизительные величины примесей можно найти в табл. 2, а, конкретно чугуна – в табл. 3. Воздействие входящих компонентов на электрическое сопротивление твердого вещества условно можно разместить в такой последовательности, по убыванию: кремний (Si), марганец (Mn), хром (Cr), никель (Ni), кобальт (Co).

Таблица 4. Коэффициенты вязкости чугуна

Температура в о С

Коэффициент вязкости в (дин · сек/см 2 ) чугуна с содержанием углерода в %

Чугун застывает белым

Чугун застывает серым

Статистические характеристики. Предел прочности (порог механического напряжения) чугуна можно вычислить качественным путем, исходя из его строения согласно показателям, указанным в таблице 2. Прочность компонентов, входящих в структуру чугуна, растет с повышением их взвешенных размеров в дисперсных системах. На порог механического напряжения наибольшее влияние оказывает строение, численность, объем и расположение графитных составляющих; структура общей массы металла не так важна.

Максимальное уменьшение прочности отмечается при размещении цепочкообразных компонентов графита, делающих структуру металла не такой непрерывной. Максимальные показатели прочности металлу придают сфероидальная структура графита. При увеличении температуры испытательного процесса, порог механического напряжения по большому счету не меняется вплоть до 400 о C (на промежутке от 100 до 200 о C прочность незначительно уменьшается, в пределах 10 – 15 %). После преодоления показателя в 400 о C фиксируется постоянная потеря показателей порога механического напряжения.

Читайте также:  Клеевой пистолет что можно делать

Характеристики пластичности обусловлены строением общей массы металла (согласно показателям, приведенным в таблице 2), но еще значительнее – формой графитных примесей. Если форма сфероидальная, то удлинение может доходить до 30 %. В сером чугуне такое удлинение практически никогда не достигает и десятой части процента. Удлинения в обожженном сером чугуне (с ферритным строением) могут составлять приблизительно 1,5 %.

Упругость обуславливается, по большому счету, графитной структурой. Она не меняется в процессе теплового воздействия на чугун, если не вносились изменения в форму графитных примесей. Тесты на изгиб показывают долю упругих деформаций равную 50 – 80 % от всей деформации.

Ползучесть чугуна не стоит путать со случаем роста (необратимого увеличения его объёма). Чугун, в составе которого отсутствуют легирующие компоненты, при нагревании, превышающем 550 о C, характеризуется остаточными деформациями, зависящими от его роста, преобладающими над деформациями, приемлемыми при определении ползучести. Если ее скорость равняется 0,00001 % в час, то за 1 тыс. часов при нагрузке в пределах 3 кг/мм 2 серый чугун без легирующих компонентов проявляет устойчивость при температурах в пределах 400 о C, а чугун, содержащий легирующие компоненты – вплоть до 500 о C. Повышения сопротивления ползучести можно добиться у аустенитного чугуна, а также у чугуна с добавкой молибдена или с повышенным наличием никеля и хрома.

Если в чугуне имеются добавки в виде графита, то его модуль упругости будет лишь условным. Этот показатель не обусловлен строением основного объема металла, и характеризуется долей графитных добавок и их строением: он снижается при повышении доли графитных добавок и при уменьшении их схожести с глобулярной структурой.

Ударная вязкость является не совсем точной характеристикой динамических качеств. Она растет с повышением включений феррита, в случае понижения включений графита, а также, когда структура графитной составляющей максимально схожа с шаровидной. При неравномерном периоде нагружений, предел усталости достигает максимума вследствие повышения напряжений, возникающих в направлении приложения нагрузки. Предел усталости повышается при росте порога механического напряжения и повторяемости нагрузок.

Жидкотекучесть определяется металлическими свойствами и структурой. Зачастую она зависит от длины заполняемой отливки, и возрастает при понижении вязкостных показателей, повышении перегрева (вместе с тем, больше всего на жидкотекучесть воздействует перегрев сверх температуры начала застывания), понижении промежутка застывания и обуславливается скрытой теплотой плавления и теплоемкости, выраженных объемом.

Степень противодействия окислению обусловлена строением чугуна и окружающей средой (химический состав, температура и ее протекание). Входящие в состав чугуна элементы имеют электродный потенциал. По уменьшению этой величины их можно расположить в такой последовательности: графит (карбидное железо), двойная или тройная фосфидная эвтектика – оксифер.

Напряжение между графитом и оксифером (ферритом) равняется 0,56 вольтам. Степень противодействия коррозии понижается при соответствующем повышении уровня дисперсности входящих в состав компонентов. Тем не менее, слишком большое понижение уровня дисперсности карбидного железа понижает степень противодействия окислению. Легирующие компоненты воздействуют на способность чугуна противодействовать окислению вместе с их влиянием на структурный состав. Чрезмерное противодействие окислительным процессам отмечается у чугунных отливок со сберегшейся коркой после литья.

Чугун вошел в нашу жизнь много столетий тому назад и остается популярным и по сей день. Он нашел широкое применение во многих областях. Однако чтобы разобраться, что такое чугун, важно знать его свойства и химический состав, структуру и особенности его сплавов, достоинства и недостатки этого материала, а также его производство и сферы применения.

Химический состав чугуна

Чугун — это сплав железа и углерода, в котором процентное содержание углерода составляет не менее 2,14%, но не более 4,5%. Углерод входит в состав чугуна в форме цементита либо графита. Если процент содержания углерода составляет меньше 2,14%, такой сплав именуется сталью.

Известно, что чугунный сплав впервые был произведен в Китае в VI веке. В Европу секрет его производства пришел в XIV веке, а в России его состав был доведен до совершенства лишь в XVII. За все это долгое время формула чугуна не изменилась.

Самый качественный материал производился на литейном заводе братьев Демидовых, расположенном на Урале.

По прошествии веков он не только не утратил своей актуальности, но и приобрел еще более обширный спектр применения.

Разновидности материала

Существуют такие виды чугуна, как предельный и литейный. Первый используют при производстве стали по кислородно-конвертерному пути. Кремний и марганец в таком сплаве содержится в очень малом количестве. Литейный вид материала более широко используется в промышленности и производстве. Он, в свою очередь, подразделяется на следующие виды:

  • Белый чугун — в нем углерод представляет собой карбид железа. При этом на его разломе видно белый отлив, откуда и пошло его название. В чистом виде он не используется. Применяется в процессе производства ковкого чугуна.
  • Для серого чугуна характерен серебристый отлив на изломе. Он имеет широкую сферу применения и отлично обрабатывается при помощи резцов.
  • Высокопрочный сплав используется для повышения прочностных характеристик изготавливаемого материала. Его получают из серого чугуна путем добавления к его массе примеси магния.
  • Ковкий чугун также является одной из разновидностей серого чугуна. Его название говорит о том, что он обладает повышенной пластичностью, а получают его из белого чугуна при помощи отжига.
  • Половинчатый — обладает специальными свойствами. Часть углерода в его составе находится в виде графита, остальная часть — в виде цементита.

Особенности сплава

Главная особенность чугуна скрыта в процессе его изготовления. Дело в том, что у разных видов этого сплава температура плавления достигает 1200ºС, в то время как у стали она составляет 1500 ºС. На этот фактор влияет слишком высокое содержание углерода. Атомы железа и углерода между собой имеют не очень тесные связи.

Когда происходит выплавка, атомы углерода не могут целиком внедриться в молекулярную решетку железа, из-за чего чугунный сплав приобретает хрупкость. В связи с этим его не используют в производстве деталей, которые будут постоянно подвергаться нагрузке.

Этот материал относится к отрасли черной металлургии и по своим характеристикам схож со сталью. Изделия из чугуна и стали нашли широкое применение в повседневной жизни, и оно является целиком оправданным.

Если сравнивать характеристики этих металлов, можно сделать следующие заключения:

  1. Стоимость стальных изделий выше стоимости чугунных.
  2. Различия в цвете: чугун темный и матовый, а сталь — светлая и блестящая.
  3. Сталь хуже поддается литью, но, в отличие от чугуна, легче поддается ковке и сварке.
  4. Сталь обладает большей прочностью, нежели чугунный сплав.
  5. Сталь тяжелее по весу.
  6. В ней содержание углерода ниже, чем в чугуне.
Читайте также:  Антенна для цифровой приставки своими руками

Достоинства и недостатки

Этот материал, как и любой другой, имеет свои сильные и слабые стороны.

К достоинствам чугуна относятся такие факторы:

  • Иногда его даже сравнивают по характеристикам со сталью, ведь определенные его виды отличаются повышенной прочностью.
  • Длительное время сохраняет температуру: при нагревании тепло по нему распределяется равномерно и долгое время остается неизменным.
  • Является экологически чистым материалом, благодаря чему нередко используется при изготовлении посуды, в которой непосредственно будет готовиться пища.
  • Не реагирует на кислотно-щелочную среду.
  • Является долговечным материалом.
  • Чем дольше используется изделие из этого материала, тем лучше становится его качество.
  • Этот материал является абсолютно безвредным для организма человека.

К недостаткам можно отнести следующие факторы:

  • Может покрываться ржавчиной даже при непродолжительном нахождении в нем воды.
  • Является весьма дорогостоящим материалом, но несмотря на это, целиком оправдывает себя. Качество, практичность и надежность — вот основные признаки изделий, изготовленных из этого сплава.
  • Серый чугун характеризуется маленькой пластичностью.
  • Белый — весьма хрупок и идет чаще всего на переплавку.

Характерные черты и свойства чугуна

Этот металлический сплав обладает такими свойствами:

  1. Физические свойства: удельный вес, действительная усадка, коэффициент линейного расширения. Например, содержание углерода в чугуне напрямую влияет на его удельный вес.
  2. Тепловые свойства. Теплопроводность обычно рассчитывают по правилу смещения. Для твердого состояния металла объемная теплоемкость составляет 1 кал/см3*оС. Если металл находится в жидком состоянии, то она примерно равна 1,5 кал/см3*оС.
  3. Механические свойства. Примечательно, что на эти свойства влияет как сама основа, так и форма и размеры графита. Серый чугун с перлитной основой является наиболее прочным, а с ферритной — самым пластичным. Пластинчатая форма графита характеризуется максимальным снижением прочности, в то время как у шаровидной формы это снижение минимально.
  4. Гидродинамические свойства. Наличие в составе марганца и серы влияет на вязкость материала. Также она имеет свойство увеличиваться, когда температура сплава переходит точку начала затвердевания.
  5. Технологические свойства. Этому металлу характерны отличные литейные качества, а также стойкость к износу и вибрации.
  6. Химические свойства. По мере убывания электродного потенциала структурные составляющие сплава располагаются в следующем порядке: цементит — фосфидная эвтектика — феррит.

На свойства сплава также оказывают влияние специальные примеси:

  • Добавление серы значительно уменьшает текучесть и снижает тугоплавкость.
  • Фосфор позволяет изготовить изделия разнообразной формы, но при этом уменьшает его прочность.
  • Добавление кремния уменьшает температуру плавления материала, а также заметно улучшает литейные свойства. Содержание кремния в различном процентном соотношении дает возможность получить сплавы разного цвета: от ферритного до чисто белого.
  • Присутствие в сплаве марганца значительно повышает твердость и прочность материала, но при этом ухудшаются его литейные и технологические качества.
  • Кроме этих примесей в состав сплава могут также входить иные компоненты. В таком случае материалы называют легированными. Чаще всего к чугуну примешиваются титан, алюминий, хром, медь и никель.

Состав и структура металла

Чугун в качестве структурного материала представлен металлической полостью с графитными включениями. Основными его компонентами выступают перлит, ледебурит и пластичный графит. Интересно, что в различных видах сплавов эти элементы присутствуют в неодинаковых пропорциях либо могут совсем отсутствовать.

По своей структуре чугунный сплав разделяется на следующие разновидности:

При этом графит может присутствовать в нем в одной из таких форм:

  1. Шаровидной: графит принимает эту форму при добавлении присадки магния. Обычно она свойственна высокопрочным чугунным изделиям.
  2. Пластичной: графит напоминает форму лепестков (именно в такой форме он присутствует в обычном чугуне). Такой материал характеризуется повышенной пластичностью.
  3. Хлопьевидной: такая форма получается в процессе отжига белого чугуна. Графит в хлопьевидной форме встречается в составе ковкого чугуна.
  4. Вермикулярной: графит в этой форме присутствует в сером чугуне. Она разрабатывалась специально для повышения его пластичных свойств.

Производственные технологии

Как известно, чугун производится в специальных доменных печах. Основным сырьем для его получения служит железная руда. Технологический процесс изготовления состоит в восстановлении оксидов железной руды и получении в результате этого иного материала — чугуна. Для его изготовления используются такие виды топлива, как кокс, термоантрацит, природный газ.

Для производства одной тонны чугуна требуется около 550 килограмм кокса и приблизительно тонна воды. Объемы загружаемой в печь руды будут зависеть от содержания в ней железа. Как правило используют руду, в составе которой содержится железа не менее 70%. Все дело в том, что экономически нецелесообразно использовать меньшую его концентрацию.

Первым этапом производства чугуна является его выплавка. В доменную печь засыпается руда, а затем — коксующийся уголь, который необходим для нагнетания и поддержания требуемой температуры внутри шахты печи. Эти составляющие во время горения принимают активное участие в протекающих химических реакциях в качестве восстановителей железа.

Тем временем в печь погружается флюс, который выступает в роли катализатора. Ускоряя плавку пород, он тем самым поддерживает скорейшее высвобождение железа. Немаловажно знать, что перед загрузкой в печь руда проходит необходимую предварительную обработку. Она измельчается на дробильной установке, поскольку более мелкие частицы плавятся быстрее. Затем ее промывают, чтобы удалить частицы, не содержащие металл. Далее сырье подвергается обжигу, вследствие чего из него извлекается сера и другие инородные компоненты.

На втором этапе производства в заполненную и готовую к эксплуатации печь подается через специальные горелки природный газ. Кокс участвует в разогреве сырья. Происходит выделение углерода, который, соединяясь с кислородом, образует оксид. Он, в свою очередь, способствует восстановлению железа из руды.

При увеличении объема газа в печи снижается скорость протекания химической реакции. Она может и совсем остановиться при достижении определённого соотношения газа. Углерод проникает в сплав и соединяется с железом, при этом образуя чугун. Нерасплавленные элементы остаются на поверхности и вскоре удаляются. Такие отходы называются шлаком. Его используют для изготовления других материалов.

Сфера использования

Этот металл используется в различных отраслях промышленности. Например, он широко применяется в машиностроении для производства различных деталей.

Чаще всего этот материал используется в производстве блоков для двигателей и коленчатых валов. Для изготовления последних необходим усовершенствованный сплав с добавлением специальных примесей из графита. Этот металл устойчив к трению, поэтому из него производят тормозные колодки высокого качества.

В жестких климатических условиях чугунный сплав незаменим, так как он позволяет изготовленным из него деталям машин работать бесперебойно даже при самых низких температурах.

Читайте также:  Приспособление для вязки проволоки

В металлургической промышленности он себя также отлично зарекомендовал. Высоко ценятся его превосходные литейные свойства и относительно невысокая цена. Изделия из него отличаются очень высокой прочностью и износостойкостью.

Из чугунного сплава делается великое множество сантехнических изделий. Это батареи, раковины, разнообразные мойки и трубы. Широкой популярностью пользуются чугунные ванны и радиаторы отопления. Срок их службы весьма длительный. Во многих квартирах по сей день используются данные изделия, потому как они долго сохраняют свой первозданный вид и редко нуждаются в реставрации.

Немаловажен и тот факт, что превосходные литейные свойства чугуна позволяют изготавливать из него целые произведения искусства: такие как ажурные кованые ворота и всевозможные памятники архитектуры.

Примечательно, что цена за 1 килограмм чугуна обусловлена количеством находящегося в его составе углерода, а еще наличием разнообразных примесей и легирующих компонентов. Цена тонны чугуна составляет около 8000 рублей.

На сегодняшний день не существует ни одной сферы, где бы ни использовался этот металл. Его литье и сплавы выступают основой многих узлов, механизмов и деталей. Иногда он используется в качестве самостоятельного изделия, прекрасно справляясь с возложенными на него функциями. Это железосодержащее соединение является уникальным в своем роде. Оно остается незаменимым и поныне.

Феррит (твёрдый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твёрдый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твёрдый раствор углерода в α-железе с объемно-центрированной тетрагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Чугу́н — сплав железа с углеродом (и другими элементами), в котором содержание углерода не менее 2,14 % (точка предельной растворимости углерода в аустените на диаграмме состояний), а сплавы с содержанием углерода менее 2,14 % называются сталью. Углерод придаёт сплавам железа твёрдость, снижая пластичность и вязкость. Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют белый, серый, ковкий и высокопрочный чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и другие). Как правило, чугун хрупок.

Выплавляется чугун, как правило, в доменных печах. Температура плавления чугуна — от 1150 до 1200 °C, то есть примерно на 300 °C ниже, чем у чистого железа.

Содержание

Этимология [ править | править код ]

В русском языке слово чугун имеет тюркское происхождение, в тюркских же языках термин, вероятно, от кит. трад. 鑄 , пиньинь: zhù, палл.: чжу, буквально: «лить; отливать (металл)» и кит. трад. 工 , пиньинь: gōng, палл.: гун, буквально: «дело» [1] . Это связано с тем, что чугун представлял собой железный сплав низкой плавки. В финском языке чугун обозначается словом Valurauta, которое имеет два корня и переводится как литое железо (rauta).

История [ править | править код ]

Технологию литья чугуна освоили в Китае, откуда этот термин (через татаро-монгольское посредничество) попал в Россию [1] . В X веке в Китае появляются чугунные монеты, однако в широком применении вплоть до XIX века оставались бронзовые монеты [2] . В XI веке был возведен чугунный шпиль пагоды Линсяо. XIV веком датируют находки чугунных котлов Золотой Орды (Тульская область) [3] , однако на территории Монголии (Каракорум) монголы умели изготовлять чугунные котлы ещё в XIII веке [4] .

В 1339 году (в годы Столетней войны) при обороне французского города Камбре уже использовались чугунные пушки наряду с бронзовыми. В 1403 году в Китае (Пекин) был отлит чугунный колокол [5] . C 1411 года англичане начинают вооружать чугунными пушками свои корабли [6] . В том же XV веке во Фландрии начинают лить чугунные ядра, которые вытесняют каменные [7] . В XVI веке в России (при Иване Грозном) из чугуна начали изготавливаться пушки [8] . Ввиду отсутствия у чугуна такого свойства как ковкость, его широкое производство стало возможным благодаря внедрению технологии доменной печи. Чугунные пушки появились у маньчжуров лишь в 1631 году [9] , а в Китае они были известны со времени династии Мин [10] , которая потеряла власть в 1644 г.

В 1701 году Каменский чугунолитейный завод на Урале (Россия) производит первую партию чугуна (262 кг). На Урале чугунное литье превратилось в народный промысел (Каслинское литьё). В XVIII веке в Англии появился первый чугунный мост (в России чугунный мост появился лишь в начале XIX века). Это стало возможным благодаря технологии Вилкинсона. В том же веке из чугуна начали изготавливать рельсы [11] (Чугунный колесопровод). Помимо промышленного использования чугун продолжал использоваться и в быту. В XVIII веке появились чугунки, которые широко стали использоваться в русской печи [12] .

К концу XVIII века Россия занимала первое место по производству чугуна и выдавала 9 908 тыс. пудов чугуна, в то время как Англия — 9516 тыс. пудов, дальше шли Франция, Швеция, США. [13]

В 1806 году Великобритания выплавляла 250 тыс. тонн чугуна, занимая 1-е место в мире по его производству, а к середине XIX века в Великобритании была сосредоточена половина мирового чугунного производства. Однако в 1890 году 1-е место по производству чугуна заняли США [14] . Технология бессмеровского процесса (1856) и мартеновской печи (1864) впервые позволила получать сталь из чугуна. В XIX веке чугун широко используется для изготовления викторианских каминов [15] , а также декоративных элементов (например, чугунная решетка памятника Александра II, 1890). Благодаря изготовлению малой скульптуры и ажурных изделий из чугуна широкую известность получили Кусинский и Каслинский заводы. Развитие способов формовки для литья сложных художественных отливок на заводе в посёлке Касли привело к созданию способа изготовления стержневых форм, который применяют и в настоящее время, особенно в станкостроении. [16] Также в XIX веке из чугуна изготавливались водопроводные и канализационные 12-дюймовые трубы Лондона [17] . Однако с появлением нарезного оружия (Пушка Армстронга, 1854) сталь вновь начинает вытеснять чугун.

Чугун
Фазы железоуглеродистых сплавов
Структуры железоуглеродистых сплавов
Ссылка на основную публикацию
Adblock detector