Содержание
- Суть и назначение технологии
- Виды азотирования
- Как происходит процесс азотирования
- Типы сред при азотировании
- Какие металлы подлежат азотированию
- Свойства и преимущества азотированных поверхностей
- Принцип процесса
- Механизм азотной обработки стали
- Какие факторы влияют на азотирование
- Разновидности обрабатываемой стали
- Этапы процедуры
- Варианты сред для обработки
- Преимущества технологии
К различным деталям машиностроения типа втулок, валов, пальцев, колец, пластин требованиями конструкторской документации могут быть установлены высокие параметры твердости и износостойкости. Для соответствия этим требованиям поверхность деталей упрочняют методами химико-термической обработки. На сегодняшний день самой эффективной технологией поверхностного упрочнения сталей и сплавов является ионная ХТО плазменное (ионно-вакуумное) азотирование и карбонитрирование.
Ионная ХТО приводит к комплексному улучшению характеристик рабочих поверхностей деталей: повышается твердость, износостойкость, как следствие улучшаются адгезионные свойства, снижается коэффициент трения. Коррозионная стойкость поверхности низколегированных сталей после ионной ХТО сопоставима с нержавеющими. Сохраняются исходные требования к поверхностной чистоте и геометрическим размерам, не требуется шлифовка и хонингование.
Преимущества ионного азотирования в сравнении с другими методами химико-термической обработки наиболее заметны при упрочнении деталей для массовой программы и крупносерийного производства. Ионно-плазменное азотирование и карбонитрирование – это ресурсосберегающие и экологически чистые технологии. Низкий расход газов, отсутствие вредных выбросов, умеренный расход электроэнергии, все это делает ионную ХТО оптимальной технологией для поверхностного упрочнения деталей в промышленных масштабах. На оборудовании нашей фирмы проводятся работы по азотированию машиностроительных деталей и другой продукции партиями в несколько тысяч штук. Наиболее часто используемые стали 38Х2МЮА (1.8509) и 40Х (AISI 5135, 1.7034), 20Х. В частности, наше предприятие на постоянной основе упрочняет массовую продукцию для Научно-производственной Компании "ИЗУРАН" (Россия, Пермь, http://npk-izuran.ru/).
АЗОТИРОВАНИЕ СТАЛИ 38Х2МЮА (1.8509)
В процессе ионного азотирования на поверхности деталей, изготовленных из стали 38Х2МЮА (1.8509) сформировались диффузионный поверхностный слой и нитридная зона, для которых характерны высокая твердость, задиро- и износостойкость. Диффузионный слой характеризуется отсутствием хрупкой нитридной сетки и имеет мелкодисперсные нитридные включения в упрочненной матрице. Общая глубина слоя 0,33 – 0,40 мм., поверхностная твердость составляет 970 – 1010 HV5 (кгс/мм 2 ).
Таблица 1. Характеристики азотированного слоя на стали 38Х2МЮА (1.8509)
Поверхностная твердость, HV30, кгс/мм 2 | 930 |
Поверхностная микротвердость, HV5, кгс/мм 2 | 970 – 1010 |
Поверхностная микротвердость, HV0.1, кгс/мм 2 | 1040 – 1090 |
Глубина азотированного слоя по микроструктуре, hм, мм. | 0,33 |
Глубина азотированного слоя по микротвердости, hс, мм. | 0,40 |
Толщина нитридной зоны hн.з., мкм. | 6 – 15 |
Хрупкость по шкале ВИАМ | 1 балл, не хрупкий |
Рисунок 1. Распределение микротвердости по глубине азотированного слоя на стали 38Х2МЮА (1.8509)
увеличение в 100 раз | увеличение в 500 раз |
Рисунок 2. Микроструктура азотированного слоя на стали 38Х2МЮА (1.8509)
АЗОТИРОВАНИЕ СТАЛИ 40Х (AISI 5135, 1.7034)
На деталях, выполненных из стали 40Х (AISI 5135, 1.7034) также формируется диффузионный слой и нитридная зона. Поверхность приобретает повышенную твердость, высокую задиро- и износостойкость. Поверхностный слой не хрупкий. Глубина слоя по микроструктуре составляет 0,35 – 0,36 мм.
Таблица 2. Характеристики азотированного слоя на стали 40Х (AISI 5135, 1.7034)
Поверхностная микротвердость, HV0.1, кгс/мм 2 | 630 – 690 |
Глубина азотированного слоя по микроструктуре, hм, мм. | 0,35 – 0,36 |
Глубина азотированного слоя по микротвердости, hс, мм. | 0,37 – 0,40 |
Толщина нитридной зоны hн.з., мкм. | 11 – 15 |
Хрупкость по шкале ВИАМ | 1 балл, не хрупкий |
Рисунок 3. Распределение микротвердости по глубине азотированного слоя на стали 40Х (AISI 5135, 1.7034)
увеличение в 100 раз | увеличение в 500 раз |
Рисунок 4. Микроструктура азотированного слоя на стали 40Х (AISI 5135, 1.7034)
Азотирование стали является одним из многочисленных методов укрепления поверхности металлических изделий. Не следует путать азотирование с цементацией: первое проходит в более щадящих температурных режимах и никаким образом не влияет на линейные размеры заготовки, не допускает деформации поверхности после обработки. При азотировании слой насыщают только азотной составляющей, а структура кристаллической решетки основного металла остается неизменной. До азотации деталь из стали можно закалить, сделать отпуск, отшлифовать до нужных размеров. После азотирования достаточно провести полирование до финишного состояния изделия. Процесс азотирования не требует серьезных материально-технических затрат, поэтому широко используется в промышленных масштабах на различных производственных линиях.
Суть и назначение технологии
Азотирование металла по сути – это термическая обработка изделий в среде, которую постоянно насыщают аммиаком. Для этого предусмотрена специальная герметичная камера-печь. На поверхности стального изделия после проведения обработки наблюдаются такие изменения:
- показатель износостойкости увеличивается за счет повышения прочности верхнего слоя;
- металл становится менее подверженным усталости;
- возрастает устойчивость к деструктивным коррозионным воздействиям, что эффективно проявляется даже при соприкосновении с агрессивной коррозионной средой.
Самое ценное, что происходит при азотировании стали, – приобретенные качества твердости имеют высокие показатели стабильности. Так, можно сказать о сохранении поверхностной твердости изделием, которое после азотирования подвергли нагреву до 600 градусов по Цельсию. Такого результата невозможно достичь при обыкновенной цементации, где наблюдается постепенное снижение твердости при нагреве более 225 градусов по Цельсию.
Если взять начальные характеристики прочности, полученные путем цементации или закалки, и сравнить их с характеристиками прочности после азотации, то последний вариант будет превосходить их в 1.5–2 раза.
Виды азотирования
Существует несколько видов азотирования стали. Они отличаются друг от друга способом выделения азота, температурными режимами, рабочей средой. Но есть у них один общий признак – это то, что азот проникает внутрь стального изделия по закону диффузии. Возникновение разных видов азотирования было вызвано стремлением ускорить процесс либо улучшить результаты применения метода, то есть качество полученного слоя.
Сегодня известны такие виды процесса:
- газовая азотация;
- плазменное азотирование;
- азотирование в цианистых солях.
Газовая азотизация
Следует рассмотреть еще один способ азотации, который получил название газового каталитического азотирования. Суть его состоит в том, что внутри печи создается определенная атмосфера, где аммиак диссоциированный подвергают специальной обработке на элементе каталитическом.
Особенности этого метода:
- Процесс требует применения сложного оборудования по созданию особых химических условий.
- Благодаря получению большего количества радикалов ионизированных при подготовке аммиака доля диффузии твердорастворной увеличивается, доля процессов химических реакционных снижается – азот быстрее проникает внутрь структуры металла.
Такой способ азотирования стали более дорогостоящий, но позволяет добиться очень высоких показателей износостойкости у ответственных изделий.
Термохимический процесс
В отличие от газового азотирования стали, где рабочей средой является смесь эндогаза или пропана с аммиаком в пропорции один к одному, при термохимическом процессе участвует только газообразный аммиак. Его подают из баллона внутрь специального герметично закрытого бокса (муфели), куда предварительно укладывают детали, требующие обработки азотированием.
Этот бокс помещают в печь, где поддерживается определенная температура. Горячий воздух воздействует на аммиак таким образом, что он начинает распадаться на азот и другие элементы. Азот постепенно диффундирует внутрь стали: чем дольше процесс, тем глубже проникновение. Термохимический процесс позволяет получить укрепленный слой глубиной 0.6 миллиметров.
Как происходит процесс азотирования
Для того чтобы проводить процессы азотирования стали, необходима специальная муфельная печь с герметически закрывающейся дверцей и возможностью создавать внутри температуру 600–500 градусов по Цельсию. Когда поверхность помещенной в печь заготовки достигнет этой температуры, некоторое время ее поддерживают при таком нагреве.
Затем в камеру начинают подавать аммиак (2NH₃), закачивая его под давлением. При повышенной температуре происходит распад аммиака на такие компоненты, как 2N и 6H. Высвободившиеся атомы азота начинают диффундировать в сталь и образовывать в поверхностном слое так называемые нитриды. Именно эти вещества, обладая высокой степенью твердости, усиливают металл, покрывая последний слой азотом.
Важно закрепить полученный результат, то есть предотвратить возможность окисления полученного слоя стали. Для этого избегают быстрого охлаждения нагретой детали, позволяя остывать ей постепенно вместе с охлаждением камеры муфельной печи.
Слой нитридный (светлая полоса на рисунке), сформировавшийся на металлической поверхности, по толщине может быть в пределах 0.6–0.3 миллиметра. Такие характеристики являются нормой при азотировании и соответствуют всем необходимым прочностным показателям – дальнейшая обработка стали не требуется.
Типы сред при азотировании
Процесс азотирования стали в реальности проводят не по одной, а по нескольким технологиям, отсюда разнообразие видов азотирования. Это связано с тем, что для одних типов металлов более эффективно усваивается азот в одной среде, для других – в другой. Но это не главное. Среда позволяет получить определенное качество поверхности либо изменить скоростной режим выполнения операции по азотированию стали. Наиболее распространенные технологии, которые используются на предприятиях:
- диффузия азота в среде газовой на основе пропана с аммиаком;
- диффузия азота при использовании разряда тлеющего;
- диффузия азотная в среде жидкого характера.
Аммиачно-пропановая среда
Азотирование в газе из смеси пропана с аммиаком сейчас наиболее применимый способ укрепления поверхности стали. Соотношение компонентов смеси берется равнозначным, температуру по шкале Цельсия догоняют до 570 градусов выше нуля, обработку проводят на протяжении трех часов.
Полученный поверхностный слой можно охарактеризовать как высокопрочную твердую поверхность с отличной износостойкостью, и это несмотря на маленькую толщину нитридов. В численных единицах твердость изделия возрастает до показателей 1100–600 HV.
Тлеющий разряд
Другими словами, тлеющий разряд – это среда разряженного состояния при ионно-плазменном азотировании. Очень распространенный метод насыщения азотом поверхности стальных изделий. Особенностью этого метода является то, что, кроме помещения заготовки в печь муфельную, где происходит нагнетание температуры, к этой заготовке подключают электрический контакт с отрицательным потенциалом (то есть получается отрицательный электрод), положительным же электродом выступает сама печь муфельная.
Ионное азотирование создает ионный поток между печью и изделием, который приобретает вид плазмы, и состоит она из элементов NH₃ или N₂. Таким образом, в поверхностный слой начинают диффундировать азотные молекулы, эффективно насыщая его.
Плазменное азотирование проходит в два этапа:
- Очищение поверхности заготовки путем распыления катода.
- Непосредственное насыщение стали азотом.
Основное преимущество метода в том, что при ионном плазменном насыщении процесс можно ускорить в несколько раз.
Жидкая среда
Кроме перечисленных двух сред для проведения операций азотирования, существует еще одна среда, подходящая для такого метода. Это жидкая среда, где применяется расплав солей цианистых, компоненты которых под действием принципа диффузии проникают в рабочий поверхностный слой металла.
Условия для протекания процесса определяются высокой температурой до уровня 570 градусов по Цельсию и длительностью проведения обработки, которая может продолжаться до 3 часов (самое меньшее – 30 минут насыщения).
Такой метод имеет высокую эффективность, но гораздо реже применяется по причине опасности для здоровья и высоких материально-технических затрат.
Какие металлы подлежат азотированию
Метод азотирования можно применить для таких сталей, как легированные и углеродистые, но при условии, если содержание в них углерода не будет выходить за показатели в 0.5–0.3%. Также доступно проводить азотирование титана. Очень хороший эффект получается в случае присутствия в структуре стали легирующих элементов, которые способны образовывать термостабильные и твердые нитриды. Можно назвать хром, алюминий, молибден и ряд других элементов.
Рассматривая марки сталей, можно выделить такие из них:
- 38Х2МЮА – изделия из такой стали после обработки необычайно тверды и стойки к изнашиванию поверхности;
- 40ХФА, 40Х – стали легированного типа для изготовления станков после азотирования способны выдерживать большее количество циклических нагрузок и медленнее стареть;
- 38ХНМФА, 30Х3М, 38ХН3МА, 38ХГМ – специализированные стали для конструкций, которые выдерживают нагрузки на скручивание и изгиб, напитанные азотом, приобретают ярко выраженную упругость;
- 30Х3МФ1 – из этой марки металла изготавливают высокоточные по геометрическим размерам изделия.
Свойства и преимущества азотированных поверхностей
Стали, подвергнутые обработке методом азотации, имеют следующие показатели твердости:
- сплавы легированные – твердость в районе 800–600 HV;
- стали углеродистые – твердость в районе 250–200 HV;
- содержащие хром, алюминий, иные металлы сплавы-нитраллои получают твердость в районе 1200 HV.
Кроме повышения твердости, любые марки сталей начинают более стабильно вести себя в коррозионной среде, не подвергаясь разрушению от окисления.
Самое важное, что при насыщении азотом в заданных температурах не происходит деформации и изменения линейных размеров изделий.
Уважаемые посетители сайта, металлурги, технологи и те, кто не понаслышке знает о методе азотирования стали! Поделитесь своими знаниями в комментариях, поддержите тему. Будем признательны за любую достоверную информацию!
Азотирование стали представляет собой относительно новую технологию диффузного насыщения поверхностного слоя азотом. Её автором стал академик Н. П. Чижевский , который предложил применять уникальную методику для существенного улучшения рабочих свойств и параметров стальной продукции. До 20-х годов прошлого столетия способ не использовался в промышленном масштабе.
Принцип процесса
Если сравнивать азотирование с традиционной цементацией, то первый вариант предлагает множество весомых преимуществ, нехарактерных для других технологий. По этой причине его до сих пор считают самым лучшим и эффективным способом обработки стальных конструкций с целью получения максимальных показателей прочности без применения дополнительной термообработки. Плюсом методики принято считать сохранение прежних размеров заготовки, что позволяет применять её уже к готовым изделиям, прошедшим термическую закалку с высоким отпуском и шлифование до окончательной формы. Успешное завершение азотирования позволяет проводить конечную полировку и другую обработку.
Процесс выполняется под воздействием аммиака, который нагревается до определенных температур. В результате материал поддаётся насыщению азотом и обретает массу уникальных свойств, включая:
- улучшенную износостойкость металлических деталей, которая обеспечивается повышением индекса твердости их поверхностного слоя;
- более высокую выносливость или усталостную прочность заготовки;
- приобретение стойкой антикоррозийной защиты, которая остаётся прежней даже при воздействии с водой, воздухом и газовоздушной средой.
Прошедшие азотную обработку детали гораздо качественнее, чем аналогичные изделия, поддавшиеся цементации. Известно, что после второй процедуры слой сохраняет стабильную твердость лишь при условиях, что температурные показатели не превышают 225 градусов. В случае с азотом максимальный порог достигает 550−600 градусов. Это объясняется выработкой поверхностного слоя, который в несколько раз прочнее, чем традиционная закалка и цементация.
Механизм азотной обработки стали
Процедуру выполняют в нагретой до 500−600 градусов Цельсия герметично закрытой среде из железа, которую устанавливают в печь. Точные показатели температуры муфели (закрытой реторты) определяются режимом и ожидаемым результатом. То же самое касается времени процедуры. В контейнере размещаются элементы из стали, которые будут насыщаться азотом.
В процессе выполнения действия в реторту из баллона подаётся аммиак, который характеризуется способностью диссоциации (разложения) под воздействием определенной температуры. Механизм азотирования можно описать следующей формулой: 2 NH3 → 6H +2N.
В результате на поверхности железных изделий образуется слой нитридов, для которых характерна особая твердость. Как только процедура завершается, печь охлаждают вместе с потоком аммиака. Подобными действиями удаётся закрепить эффект по твердости слоя и предотвратить окисление поверхности.
Толщина нитридного слоя достигает 0,3−0,6 миллиметров. В итоге необходимость в термической обработке для улучшения показателей прочности банально пропадает. Формирование азотного слоя выполняется по сложной схеме, однако, путём продолжительных исследований металлурги изучили её максимально подробно. В сплаве возникают следующие фазы:
- Твердый раствор Fe3N с долей азота 8,0−11,2%;
- Твердый раствор Fe4N с долей азота 5,7−6,1%;
- Раствор N в α-железе.
Если удаётся довести процесс до температуры 591 градусов Цельсия, это позволяет заметить ещё одну α-фазу. При достижении лимита насыщения возникает ещё одна фаза. Эвтектоидный распад производит 2,35% азота.
Какие факторы влияют на азотирование
Ключевое воздействие на процедуру оказывают следующие факторы:
- температурный режим;
- давление газа;
- пролонгированность азотирования.
Конечный результат может определяться и степенью разложения активного вещества, которая варьируется в пределах 15−45%. К тому же важно учитывать одну особенность: чем выше температурные показатели, тем хуже прочностные показатели азотного слоя, но выше скорость диффузии. Твёрдость обусловлена коагуляцией нитридов.
Чтобы «выжать» из процедуры максимум положительных свойств и сократить время на обработку, некоторые металлурги практикуют двухэтапный режим работы. На начальном стадии стальную заготовку обогащают азотом под воздействием температуры 525 градусов. Этого вполне достаточно для обогащения верхних слоёв и повышения твёрдости.
Следующий этап подразумевает применение более высокого температурного режима от 600 до 620 градусов Цельсия. В данном случае глубина полученного слоя доходит до заданных значений, а весь процесс ускоряется практически в два раза. Тем не менее показатели твёрдости остаются аналогичными, как и при одноступенчатой обработке.
Разновидности обрабатываемой стали
Современная металлургия использует технологию азотирования для обработки углеродистых и легированных сталей, где доля углерода составляет 0,3−0,5%. Высокую успешность процедуры можно заметить при выборе легирующих металлов, способных создавать нитриды с высокими показателями термостойкости и твёрдости. Для примера, особая результативность процесса характерна при использовании тех конструкций, в составе которых сосредоточен алюминий, молибден, хром и другое подобное сырье. Подобные стальные заготовки принято называть нитраллоями.
Молибден способен предупреждать отпускную хрупкость, которая вызывается медленным остыванием стали после успешного завершения обработки. В итоге материал обретает следующие характеристики:
- Твердость углеродистой стали — HV 200−250;
- Легированной — HV 600−800;
- Нитраллоев до HV 1200 и даже выше;
Рекомендуемые марки
Выбор конкретных марок стали определяется сферой эксплуатации элемента из металла. В основном металлурги выделяют следующие критерии:
-
Этапы процедуры
- Подготовка метала путём термической обработки, в процессе которой выполняется закалка и высокий отпуск. Внутренность изделия обретает характерную вязкость и прочность. Закалку проводят под воздействием высоких температур, вплоть до 940 градусов. В дальнейшем материал поддают охлаждению в масле или воде. Отпуск выполняется при температурном режиме 600−700 градусов Цельсия, чего достаточно для обретения повышенной твёрдости;
- Что касается механической обработки заготовок, то её завершают методом окончательной шлифовки материала. В конечном результате деталь обретает нужные размеры;
- Важно обеспечить ряд предохранительных мер для тех элементов, которые должны насыщаться азотом. В процессе обработки применяют простые составы вроде жидкого стекла или олова, которые наносятся путём электролиза слоем не больше 0,015 миллиметров. Это позволяет сформировать тонкую пленку, непроницаемую для азота;
- Следующий этап подразумевает азотирование по упомянутой выше технологии;
- На финишном этапе детали доводят до ожидаемого состояния, а заготовки сложной формы с тонкими стенками упрочняют при температуре 520 градусов Цельсия.
- изначально происходит катодное распыление;
- затем очистка поверхности;
- затем насыщение.
Подготовительный этап, обработку азотом и финишное завершение поверхностного слоя стали и сплавов выполняют с помощью нескольких ступеней:
Что касается изменения геометрических свойств заготовки после азотирования, то оно определяется толщиной полученного азотонасыщенного слоя и примененными температурами. В любом случае отклонения от ожидаемой формы незначительные.
Важно понимать, что современная технология обработки путём азотирования подразумевает использование печей шахтного типа. Максимальные температурные показатели достигают 700 градусов, поэтому циркуляция воздуха становится принудительной. Муфель бывает встроенным в печь или сменным.
При использовании дополнительного муфеля процесс обработки происходит гораздо быстрее. В итоге запасной муфель загружается сразу по готовности первого. Правда, такой способ не получил широкое распространение из-за высокой затратности.
Варианты сред для обработки
В настоящее время особо большим спросом пользуется азотная обработка стальных заготовок в аммиачно-пропановой среде. В таком случае у металлургов появляется возможность выдерживать сырье под воздействием 570 градусов на протяжении трёх часов. Образованный в таких условиях карбонитридный слой обладает минимальной толщиной, однако показатели прочности и износостойкости гораздо выше, нежели у тех вариантов, которые были изобретены по обычной методике. Твёрдость данного слоя находится в пределах 600−1100 HV.
Технология по-особому незаменима при выборе изделий из легированных сплавов или стали, к которым предъявляются высокие требования по эксплуатационной выносливости.
Также не менее популярным решением является применение технологии тлеющего разряда, когда материал упрочняют в азотсодержащей разряженной среде, подключая металлические изделия к катоду. В результате заготовка обретает отрицательно заряженный электрод, а у муфеля — положительно заряженный.
Технология позволяет сократить продолжительность действия в несколько раз. Между плюсом и минусом появляется разряд, а ионы газа воздействуют на поверхность катода, нагревая его. Такое воздействие осуществляется несколькими этапами:
На первом этапе распыления выдерживают давление 0,2 миллиметра ртутного столба и напряжение 1400 вольт на протяжении 5−60 минут. В таком случае поверхность нагревается до 250 градусов Цельсия. Второй этап подразумевает использование давления 1−10 миллиметров ртутного столбика при напряжении 400−1100 В. Для процедуры требуется 1−24 часа.
Ещё одним очень эффективным методом обработки является тенифер-процесс, который подразумевает азотирование в жидкости на основе расплавленного цианиста под воздействием температуры 570 градусов Цельсия.
Преимущества технологии
В настоящее время технология азотирования считается самым популярным решением для достижения самых лучших эксплуатационных показателей металлических деталей. При правильном подходе обеспечивается наилучшее сопротивление изнашиванию, к тому же полученные в результате подобной обработки слои обретают высокую сопротивляемость коррозийному воздействию. Прошедшие обработку конструкции не нуждаются в дополнительной термической закалке. За счёт таких особенностей азотирование принято считать ключевым процессом обработки элементов в машиностроении, станкостроении и других сферах, где предъявляются высокие требования к составным частям.
Однако, кроме многочисленных плюсов, у технологии есть и минусы, которые заключаются в дороговизне и продолжительности процедуры. При температурном режиме 500 градусов Цельсия азот способен проникать на 0,01 миллиметров. В таком случае общая длительность процесса достигает одного часа.
“>