Содержание
Назначение, устройство и принцип действия автотрансформаторов
В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).
Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.
В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.
Рис. 1 Схемы однофазных автотрансформаторов: а – понижающего, б – повышающего.
Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.
Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1 , то оба тока геометрически сложатся, и по участку a Х будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.
Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.
В электромагнитных преобразователях энергии – трансформаторах – передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.
Трансформатор и автотрансформатор
Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации – мало отличается от единицы и но более 1,5 – 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.
В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.
Лабораторные автотрансформаторы (ЛАТРы)
Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.
Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).
От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.
При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.
Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.
Схема лабораторного регулируемого однофазного автотрансформатора
Лабораторный автотрансформатор (ЛАТР)
Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.
В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 3). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b , с, а при повышении напряжения – наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах нагревательных элементов электрических печей.
Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой
Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.
Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.
Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.
Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.
Существенный недостаток автотрансформаторов – гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 – 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.
При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.
Автотрансформатор представляет собой трансформатор, у которого обмотка низкого напряжения является частью обмотки высокого напряжения (рис. 7.6).
У однофазного автотрансформатора всего одна обмотка. В режиме холостого хода автотрансформатор ничем не отличается от обычного трансформатора. В режиме нагрузки по общей части витков протекает ток, который равен разности токов (i1 – i2), так как вторичный ток ослабляет магнитный поток в сердечнике (т. е. соответствующий магнитный поток имеет знак, противоположный знаку потока, создаваемого током первичной обмотки).
Чаще всего автотрансформаторы изготавливают со скользящим контактом, что позволяет плавно регулировать выходное напряжение в широких пределах. Примером может служить лабораторный автотрансформатор (ЛАТР) (рис. 7.7, а).
Обмотка этого трансформатора выполнена проводом круглого сечения на тороидальном стальном сердечнике. На одной торцевой стороне изоляцию снимают вместе с частью самого провода, но при этом витки остаются изолированными друг от друга (рис. 7.7, б). По оголенной поверхности витков скользит небольшая щетка, подключая нагрузку к различному числу витков и изменяя тем самым выходное напряжение. Так как перемещающаяся щетка замыкает накоротко сразу 1—2 витка, то при хорошем контакте между ними эти витки могут сгореть. Чтобы этого не случилось, щетку делают из графита, сопротивление которого достаточно велико для ослабления токов в короткозамкнутых витках.
Если часть обмотки автотрансформатора сделать первичной, а всю обмотку вторичной, то автотрансформатор будет повышающим.
15. Трансформаторы тока и напряжения.
В технике больших токов и высоких напряжений измерения электрических величин производят только через измерительные трансформаторы —трансформаторы тока и трансформаторы напряжения, так как непосредственные измерения с помощью шунтов и добавочных резисторов весьма затруднительны. Так, наибольший ток, который еще можно измерить путем непосредственного включения прибора, составляет 600 А, а напряжение — 2000 В. К тому же шунты и добавочные сопротивления получаются громоздкими и дорогими, а прикосновение к таким приборам в сетях высокого напряжения опасно для жизни.
Трансформатор тока состоит из сердечника и двух обмоток — первичной и вторичной (рис. 7.8).
Первичную обмотку, которая содержит небольшое количество витков, включают последовательно с нагрузкой, в цепи которой необходимо измерить ток, а к вторичной обмотке, с большим числом витков, подключают амперметр. Так как сопротивление амперметра мало, то можно считать, что трансформатор тока работает в режиме короткого замыкания, при котором суммарный магнитный поток равен разности потоков, созданных первичной и вторичной обмотками.
Измеряемый ток, протекая по первичной обмотке с низким сопротивлением, создает на ней весьма небольшое падение напряжения, которое трансформируется во вторичную обмотку. Поскольку число витков вторичной обмотки значительно больше, чем у первичной, то на ней получается значительно большее напряжение при меньшем токе.
Трансформатор тока применяют не только для определения силы тока, но и для включения токовых обмоток ваттметров и некоторых других приборов. Выводы обмоток трансформатора тока маркируют следующим образом: первичная обмотка — Л1 и Л2 (линия), вторичная — И1 и И2 (измеритель). На рис. 7.8 также изображено схематическое обозначение трансформатора тока.
Один и тот же трансформатор тока можно использовать для одновременного включения нескольких измерительных приборов (рис. 7.9), однако желательно, чтобы их было не больше двух. Это объясняется тем, что по мере увеличения числа приборов их общее сопротивление возрастает, и режим работы трансформатора тока все более отходит от режима короткого замыкания (уменьшается ток вторичной обмотки).
Трансформатор тока не только расширяет пределы измерения приборов, но и гальванически отделяет вторичную цепь от первичной, изолируя тем самым прибор от высоких напряжений сети. Поэтому измерительные приборы монтируют обычным способом на распределительных щитах. При этом для безопасности один вывод вторичной обмотки заземляют для того, чтобы при пробое изоляции между обмотками провод с высоким потенциалом оказался замкнутым на землю. Трансформаторы тока изготавливают таким образом, чтобы номинальный ток вторичной обмотки составлял 5 А.
Вторичную обмотку работающего трансформатора тока нельзя размыкать и оставлять разомкнутой. Она всегда должна быть замкнута на прибор или закорочена. Это следует делать потому, что при разомкнутой вторичной обмотке магнитный поток в сердечнике обусловлен лишь большим первичным током, а не разностью потоков первичного и вторичного токов. Этот большой магнитный поток создаст на вторичной обмотке высокое напряжение, опасное для жизни. Кроме того, большой магнитный поток может вызвать перегрев сердечника.
Конструктивно трансформаторы тока выполняют по-разному. Все они, как правило, имеют несколько коэффициентов трансформации. Наиболее удобный переносной трансформатор тока — измерительные клещи (рис. 7.10).
Это трансформатор с разъемным сердечником, смонтированный в одном корпусе с амперметром. При нажатии на рукоятку сердечник размыкается и им обхватывается провод с измеряемым током. После отпускания рукоятки специальная пружина плотно замыкает сердечник, и амперметр показывает силу тока в проводе. В данном случае провод с измеряемым током выступает в роли первичной обмотки. Измерительные клещи очень удобны, так как позволяют измерять ток в любом месте линии без разрыва провода, хотя точность таких измерений невысока.
Трансформатор напряжения состоит из сердечника и двух обмоток — первичной и вторичной (рис. 7.11).
Первичная обмотка содержит значительно больше витков, чем вторичная. На первичную обмотку подается измеряемое напряжение U1, а к вторичной обмотке подсоединяется вольтметр. Поскольку сопротивление вольтметра велико, то по вторичной обмотке течет небольшой ток, и можно считать, что трансформатор напряжения работает в режиме холостого хода, т. е. изменения вторичного напряжения пропорциональны изменениям первичного при постоянном коэффициенте трансформации. Фаза вторичного напряжения противоположна фазе первичного. Выводы трансформатора напряжения обозначают следующим образом: выводы первичной обмотки — А, X, выводы вторичной — а, x. Все трансформаторы напряжения
изготавливают таким образом, чтобы номинальное напряжение вторичной обмотки было равно 100 В.
В целях безопасности обслуживающего персонала один зажим вторичной обмотки и стальной кожух трансформатора напряжения обязательно заземляют для того, чтобы при пробое изоляции между обмотками провод с высоким потенциалом оказался замкнутым на землю. Конструктивно трансформаторы напряжения очень похожи на маломощные силовые трансформаторы.
Благодаря такой особенности устройство обладает не только магнитной, но и электрической связью.
Устройство и принцип действия автотрансформаторов рассмотрим в статье.
Что такое автотрансформатор?
С общей точки зрения трансформаторы — приборы, предназначенные для преобразования показателей тока входного типа с одного напряжения на выходные токи другого напряжения. Если необходимо произвести замену уровня напряжения в незначительных пределах, то самым оптимальным вариантом станет применение однообмоточного прибора, также известного под названием автотрансформатор.
При коэффициенте трансформации на уровне единицы осуществляется полное поступление энергии непосредственно к заключительному потребителю.
Регулирование обеспечивается секционированной обмоткой внутри автотрансформатора, а сам прибор характеризуется удобством и ремонтопригодностью.
Отличие автотрансформатора от трансформатора
Классические трансформаторы обладают не связанными друг с другом первичными и вторичными обмотками, поэтому процесс передачи энергии в таких устройствах обусловлен наличием магнитного поля.
На объединенной обмотке автотрансформатора располагается три вывода или более, при подключении к которым есть возможность получить различные показатели уровня напряжения.
В условиях малых коэффициентов трансформации, в пределах одной-двух единиц, любые автотрансформаторы показывают более высокую эффективность по сравнению с трансформаторными устройствами. Кроме всего прочего, такие приборы более легкие по весу и доступнее по стоимости, чем традиционные трансформаторы многообмоточного типа.
Однако, сравнивая основные характеристики автотрансформатора и классического трансформатора, можно смело утверждать, что второй вариант является максимально универсальным, а также отличается более широким диапазоном работы в процессе эксплуатации.
Преимущества и недостатки
Основные преимущества автотрансформаторов закономерно снижаются в условиях повышения трансформирующего коэффициента, и именно по этой причине агрегаты такого типа недопустимо использовать при питании распределительной электрической сети 220 В от напряжения шесть тысяч Вольт.
Таким образом, достоинства автотрансформатора максимально проявляются при наименьшем коэффициенте трансформации, и в этом случае бывают представлены:
- незначительным расходом стали для изготовления сердечника;
- пониженным расходом меди для производства обмоток;
- простотой и незначительными габаритами конструкции;
- почти максимальным коэффициентом полезного действия, достигающим показателей 99 %;
- меньшими потерями на обмотках и стальных магнитных проводах;
- частичной передачей энергии с использованием электрических связей;
- достаточной полезной мощностью;
- наименьшими изменениями напряжения в условиях смены нагрузки;
- доступной для рядового потребителя стоимостью.
При наличии высшего и низшего напряжения в условиях одного порядка отсутствуют препятствия для электрического соединения цепей.
Основные недостатки автотрансформатора заключаются в малом сопротивлении короткого замыкания, объясняющим высокую токовую кратность и возможность передачи высшего напряжения в сеть с низкими показателями, что обусловлено наличием электрической связи. Низковольтная схема внутри устройства напрямую зависит от наличия в сети достаточно высокого уровня напряжения, поэтому для предотвращения сбоев разрабатываются специальные схемы.
Кроме всего прочего, небольшое рассеивание, возникающее между обмотками, может спровоцировать короткое замыкание. Важно помнить, что соединение между обмотками в обязательном порядке должно быть максимально равномерным, а нейтраль обладает исключительно двумя блоками.
Устройство автотрансформатора
Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.
Двухобмоточный трансформатор и автотрансформатор
Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.
Поломку трансформатора можно определить при помощи мультиметра. Как проверить трансформатор мультиметром – особенности прямого и косвенного методов проверки.
Схему подключения трансформатора с трех мест вы найдете тут.
С принципом действия трансформатора 220 на 12 вольт вы можете ознакомиться по ссылке.
Принцип действия
Наиболее важные характеристики принципа действия стандартного автотрансформатора определены особенностью подключения обмоточной части.
В процессе подключения к катушке тока переменного типа внутри сердечника отмечается наличие магнитного потока.
Каждый виток на этом этапе эксплуатации прибора характеризуется индукцией электродвижущей силы с идентичной величиной.
Таким образом, принцип работы прибора объясняется стандартной схемой автотрансформатора, а в результате подсоединения нагрузки наблюдается перемещение вторичного электрического потока по обмотке. В это же время по проводнику осуществляется движение первичного тока. В результате величины двух потоков суммируются, поэтому на участок обмотки осуществляется подача незначительных по величине показателей электрического тока.
Советы и рекомендации
В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.
- дифференциальная разновидность, предупреждающая выход из строя при любых нарушениях в обмотке;
- принцип токовой отсечки, корректирующий неполадки, возникшие на ошинковках или вводах;
- высокоэффективная токовая защита, которая четко срабатывает в условиях повреждения агрегата;
- газовый вид, оповещающий даже о выделениях или понижении количества маслянистой жидкости.
Токовые трансформаторы – важное защитное свойство релейного типа. Схема подключения трансформатора тока – варианты монтажа вы найдете на нашем сайте.
Для чего необходим провод заземления? Подробно о назначении рассмотрим далее.
Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.